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Traffic Intelligent Twins (TrafficGo)

Inclusive Al, making urban transportation safer while yielding new levels of-»enétgy—efﬁciency!, .

Traffic Light Optimization

Integration of multiple data sources for 24/7
Traffic Prediction traffic light coordination; cross-intersection and
/ . regional traffic light coordination for real-time
Y Precise prediction of vehicle and pedestrians optimization; compatible with mainstream
flows as well as traffic congestion with the traffic signal control systems
benefit of multiple data sources
Traffic Parameter Awareness
Road Network Analysis Accident Monitoring and Control s
/ - < 5 g Awareness of more than 10 types of traffic
& Information from analysis of key roads and Real-time monitoring and alarm notification of parameters involving motor vehicles, non-
intersections summarized to present highly traffic emergencies, violations, heavy motorized vehicles, and pedestrians; GIS map
effective suggestions on optimizing traffic flows congestion, and other incidents; monitoring of displayed on a large HD screen in real time;
trajectories and behaviors for tourist coaches, traffic optimization effect comparison and
passenger buses, tanker trucks, taxis, traffic index ranking

commercial trucks, school buses, and other
vehicle types;






Space-time physics of traffic
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Axenie et al., OBELISC @ ECML 2021



Exploiting the physics of road traffic

0
=
=
O
C
>
©
%
%
O
O
Q@
o)
£
n




Oscillator-based modelling and nonlinear control

Internal
properties

N
o =Wwi®) +E«:1(t) ; Ayjsin(0;(t) — Gi(t)ﬂ—l— Fisin(0*(t) — 0;(1))

Network coupling External coupling

where:

f; - the amount of green time of traffic light ¢

w; - the frequency of traffic light ¢ oscillator

k; - the flow of cars passing through the direction controlled by oscillator i

A;; - the static spatial adjacency coupling between oscillator i and oscillator j
F; - the coupling of external perturbations (e.g. maximum cycle time per phase)
6* - the external perturbation (e.g. traffic signal limits imposed by law)



Oscillator-based modelling and nonlinear control

a. Example road network topology
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b. Dynamics of the oscillator network
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Oscillator-based modelling and nonlinear control

Normal traffic
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Oscillator-based modelling and nonlinear control

Internal
properties

Network coupling

External coupling

Regularizing control law

46, (t) a
== : Ei(t);ﬂijﬁin(ﬂj{t) - Hi(t)ﬂ—k Fisin(0"(t) —0;(t)) j+u: ()

where:

Sliding Mode Control \

0<ep <ea<ez <1

s;(t) - the surplus energy of traffic light i oscillator
§;(t) - the estimated surplus energy of traffic light ¢ oscillator

@ |nitial conditions
| ||| Energy surplus (uncertainty, disruption)

Sliding surface
(robust dynamics)



Oscillator-based modelling and nonlinear control

Real road network layout Traffic profile in the road network

10071 Time loss under disruption without control
Time loss under disruption with sliding mode control

Time loss (s)
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|| || Energy surplus (uncertainty, disruption) =

t s,(t) Surplus energy of oscillator at time t =
I -

Fast timescales
(oscillators &
convergence =
with sliding
control law)

Crosses Sliding surface

1 oscillator per direction (robust dynamics)
5 crosses with 4 directions Slow timescale
3 crosses with 3 directions (flow data)




Efficient neural learning

Neural activation
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Efficient neural learning

Learning in spiking neural networks

Neural Engineering Framework (NEF)
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Experiments & Results

The experiments and evaluation use the SUMMER-MUSTARD (Summer season Multi-cross Urban
Signalized Traffic Aggregated Region Dataset) real-world dataset, which contains 59 days of real urban
road traffic data from 8 crosses in a city in China*
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* hitp://doi.org/10.5281/zenodo.5025264
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Observations
OBELISC

Oscillator-Based Modelling and Control using Efficient Neural Learning for Intelligent Road Traffic Signal Calculation

« Traffic control is a multi-dimensional problem to be optimized under deep uncertainty.

« A system using a network of oscillators capturing the (periodic) spatial and temporal interactions
among different crosses in a road traffic network.

« A control mechanism that strengthens the adaptation capabilities towards global consensus under
high-magnitude traffic disruptions.

« Alightweight learning system that exploits the coupling interactions among different controlled
oscillators.

* An end-to-end system (modelling, control, inference) with proven potential for real-world
deployment.

Axenie et al., OBELISC @ ECML 2021






Exploiting causality in road traffic control

Space-time Diagram of the Signalized Traffic Light Operation TRAMESINO Processing Steps for Training and Inference
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High-dimensional vector algebra for associative memories

High-dimensional vector representation and computation
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Experiments & Results

The experiments and evaluation use the SUMMER-MUSTARD (Summer season Multi-cross Urban
Signalized Traffic Aggregated Region Dataset) real-world dataset, which contains 59 days of real urban
road traffic data from 8 crosses in a city in China* reproduced in SUMO simulator.
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Experiments & Results

Traffic Key Performance Indices (KPI) evaluation

System /
Disruption level

N

L

M

H Ranking Deviation

Awverage trip duration(s)

BASELINE 168.805 181.217 265.546 270.167 4 49.86%
MILP 118.336 132.406 167.173 167.673 1 0.0%
HOPFIELD 151.281 151.381 223.017 257.464 3 32.28%
TRAMESINO 156.379 157.371 203.775 236.224 2 28.44%
Average speed(km/h)
BASELINE  58.15 56.78 49.38 47.50 4 10.95%
MILP  59.30 60.00 59.40 59.10 1 0.0%
HOPFIELD  59.48 59.97 49.28 46.18 3 9.84%
TRAMESINO  59.78 59.02 52.08 48.28 2 8.14%
Waiting time(s)
BASELINE 16.45 1853 3259 35.13 4 7.02%
MILP 1398 16.14 15.14 15.07 1 0.0%
HOPFIELD 1398 14.96 29.32 37.29 3 5.84%
TRAMESINO  14.95 14.57 2216 29.01 2 2.96%



Experiments & Results

Run-time performance evaluation
B Optimization time (s)
B Total time (s)

MILP

HOPFIELD
BASELINE
TRAMESINO
Simulation Time (s) 0 500 1000 1500 2000 2500 3000 3500 4000
TRAMESINO BASELINE HOPFIELD MILP
B Optimization time (s) 175.2699437 418.8146019 570.0803573 970.0803573

B Total time (s) 1451.665398 1601.359572 2278.111582 3278.111582



Experiments & Results
Encoding/decoding accuracy of TRAMESINO memories
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Observations

TRAMESINO

Trainable Memory System for Intelligent Optimization of Road Traffic Control

The highly non-linear and unpredictable real-world road traffic situations need timely actions.

A system that models only relevant causal action-consequence pairs within traffic data (i.e. green
time — traffic count).

A memory mechanism to store traffic patterns and retrieve plausible decisions.

A lightweight learning system encoding and manipulating traffic data encoded in high-dimensional
vectors using spiking neural networks.

An end-to-end system that learns temporal regularities in traffic data and adapts to abrupt changes,
while keeping computation efficient and fast.

2+ Axenie et al., TRAMESINO @ AALTD 2021
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