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Driver model calibration

Problem analysis
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Driver model calibration

Problem statement
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Alternatives to optimization-based calibration

Fuzzy Modelling, Inference and Regression
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if velocity is verysmall and acceleration is mild and spacegap is verysmall and timegap is veryshort then creepingregime is high

if velocity is small and acceleration is negativelow and spacegap is small and timegap is short then creepingregime is moderate IDM Parameter Driving regime/state Identification criteria
if velocity is medium and acceleration is negativelow and spacegap is medium and timegap is medium then creepingregime is low

if velocity is high and acceleration is mild and spacegap is medium and timegap is medium then steadyregime is moderate Desired speed Ufree Cruising 7T>Ta > ae, v> v
if velocity is veryhigh and acceleration is mild and spacegap is large and timegap is large then steadyregime is high Maximum acceleration a Free-flow 7> T,.,a > a, and not cruising
if velocity is high and acceleration is positivelow and spacegap is large and timegap is large then steadyregime is low Minimum space gap So Braking 5 < 8,
if velocity is high and acceleration is negativelow and spacegap is medium and timegap is medium then approachingregime is low . . . M 2(v—Vlcader)

if velocity is high and acceleration is negativehigh and spacegap is small and timegap is medium then approachingregime is moderate Maximum deceleration b Approachmg U > Vol v > T‘-" T 2s > e
if velocity is veryhigh and acceleration is negativehigh and spacegap is medium and timegap is short then approachingregime is high Desired time gap 7 Following 7 < T, and no other regime condition
if velocity is high and acceleration is positivelow and spacegap is large and timegap is large then acceleratingregime is low




Alternatives to optimization-based calibration

Fuzzy Modelling, Inference and Regression

Fuzzy Inference System
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Alternatives to optimization-based calibration

Fuzzy Modelling, Inference and Regression
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Alternatives to optimization-based calibration

Fuzzy Modelling, Inference and Regression
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Alternatives to optimization-based calibration

ﬂ' input variables
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Preliminary results

Preliminary results

Qualitative realism

Tested and evaluated on NGSIM (180)

Ground truth

No calibration

Opt. calib.

Fuzzy calib.

Driver model calibration approach

Metric

Velocity-density characteristic, M,

Joint velocity-acceleration-headway distribution, M
Number of lane changes, Mj

Flow percent deviation, My

Density percent deviation, Ms

Baseline
0.085
0.061
0.536
0.637
0.233

Optimization
0.159
0.214
0.120
0.481
0.090

Fuzzy(ours)

0.080
0.006
0.777
0.235
0.175

Clustering
0.158
0.751
0.576
0.382
0.483
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Preliminary results

Preliminary results

Qualitative realism

Tested and evaluate on Chinese Drivers

Chengdu, Chenglong, Chechengdongqi (Checheng east)
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Conclusions & next steps

Driver model calibration can go beyond optimization-
based methods and follow plausible configurations.

Expert knowledge is very important to assess calibration
outcomes (micro-/macro-quantities).

Opening the way to online calibration/re-calibration
without time-consuming optimization and a plausible
trade-off in accuracy.

Fusing physics, expert knowledge, machine learning in and
end-to-end system.



