

Outline

- Road traffic congestion
- Road traffic control basics
- Learning multisensory fusion for road traffic prediction
 - Basic principle
 - Neuronal learning and fusion
 - Inference
- Real-world example on limited resources devices
- Conclusions

Road traffic congestion

Year 2018 in Berlin

- Total of 1.5 million Km jam
- Total of 154 h time lost/driver

Year 2018 in Germany

- Average 120 h time lost/driver
- Economic loss 1,052 €/driver

Source: https://www.thelocal.de/20190213/traffic-jams/

Road traffic control

Road traffic control

From: https://support.huawei.com/enterprise/en/doc/EDOC1100172551

Learning multisensory fusion for road traffic prediction

Learning multisensory fusion for road traffic prediction

Basic principle [1]

The underlying **neural networks**:

- Self Organizing Maps (SOM) [2] to encode the input data into efficient sparse representation
- Hebbian Learning [3] to extract the temporal co-activation patterns encoding the function

Learning multisensory fusion for road traffic prediction

Neuronal learning and fusion

Neuronal multisensory fusion for road traffic prediction Inference

Multisensory fusion for road traffic prediction

In a traffic scenario we propose to learn the correlation between Environment parameters (e.g. NO, O3, NO2, NOx), Weather (e.g. Humidity, Rain) and the Traffic Flow (i.e. number of vehicles) at a site.

Once learnt the correlation we can use it to infer traffic flow in regions where we do not have traffic sensors installed but all other sensors are present.

https://newcastle.urbanobservatory.ac.uk/

Multisensory fusion for road traffic prediction

Multisensory fusion for road traffic prediction (live-demo)

Multisensory fusion for road traffic prediction

Multisensory fusion for road traffic prediction

Once **learnt the correlation** we can use it to **infer traffic flow** in regions where **we do not have traffic sensors** (i.e. **cameras**) installed but **all other sensors** are present (e.g. Humidity and NO2).

The system can be used for a **multitude of sensors** available (i.e. **mobility data [4]**: *GSM user cell switches overlaid on geospatial motion parameters*; ranges of high-intensity sound mounted on streets; particle count sensors for high-range exhaust gas).

If the **traffic sensor is failing / defect**, the system uses previously learnt relations to infer a plausible prediction.

Real-world example on limited resource devices Performance analysis

Number of crossroads	Number of sensors	Data aggregation	Learning time (s)*	Inference time (s)*
1	3	1 min	54.819	0.004
	10	5 min	298.452	0.031
5	3	1 min	232.270	0.021
	10	5 min	1880.212	0.084
10	3	1 min	673.583	0.044
	10	5 min	4136.521	0.102
15	3	1 min	1300.781	0.075
	10	5 min	11093.250	0.534

Specifications

Huawei Ascend 310 Processor, 8 GB RAM (DDR4), 32 GB SSD, 50W 1000 neurons/sensor

3 Days data (72 h)

1 min aggregation - 4320 samples/sensor

5 min aggregation - 864 samples/sensor

* Average values per 100 experiments

Conclusions

Multisensory fusion for road traffic prediction

- Real-time traffic prediction needs multisensory fusion to better understand traffic dynamics
- Deployment on limited-resources devices needs lightweight learning systems for fusion
- Neural networks can be key for multisensory fusion and prediction
- There is an alternative to deep neural networks for sensor fusion which is versatile, simple, adaptive and lightweight
- Such a system is easily deployable, transferrable, and fault-tolerant

Bibliography

[1] C. Axenie, Synthesis of Distributed Cognitive Systems: Interacting Computational Maps for Multisensory Fusion, https://mediatum.ub.tum.de/1284085

[2] Kohonen, T. (1991). Self-organizing maps: optimization approaches. In *Artificial neural networks* (pp. 981-990). North-Holland.

[3] Gerstner, W., & Kistler, W. M. (2002). Mathematical formulations of Hebbian learning. *Biological cybernetics*, *87*(5), 404-415.

[4] El Faouzi, N. E. (2004). Data fusion in road traffic engineering: An overview. *Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2004, 5434*, 360-371.

Video lecture and Example code

Youtube lecture

GitHub codebase

in Produktion, verfügbar vor Montag 9.05.2022