
Page | 1  
 

     Computational  



Page | 2  
 

Acknowledgement  
 
The course provides an introduction to theory and application of neuronal (deep) 
networks, neuromorphic systems, fuzzy control techniques, support-vector machines, 
evolutionary and genetic algorithms for optimization, immunological computation and 
artificial immune systems, reinforcement learning, distributed agent-based learning 
and on-line streaming machine learning. It is mainly based on the Computational 
Intelligence Course taught by Cristian Axenie and Prof. Jorg Conradt at TU Munich. 
The materials shall only be used within the class and not distributed outside. 
  



Page | 1  
 

Contents 

Lectures 

1. Introduction to Artificial Intelligence and Machine Learning  

2. Traditional computation 

2.1. Sorting algorithms 

2.2. Graph search algorithms 

3. Supervised neural computation 

3.1. Biological neurons vs. artificial neurons 

3.2. Learning in artificial neurons 

3.3. From single neurons to neural networks 

3.4. Learning in neural networks: Error Backpropagation in Multi-Layer Neural Networks 

3.5. Supervised learning: tips and tricks  

4. Unsupervised neural computation 

4.1. Introduction to unsupervised learning 

4.2. Radial Basis Functions 

4.3. Vector Quantization 

4.4. Kohonen’s Self-Organizing-Maps 

4.5. Hopfield Networks 

5. Deep Neural Learning 

5.1. Fundamentals of Deep Networks 

5.2. Common Architectural Principles of Deep Networks 

5.3. Building Blocks of Deep Networks.  

5.4. Major Architectures of Deep Networks 

6. Technical implementations of neural computation 

6.1. Recurrent networks 

6.2. Time-series prediction 

6.3. Support Vector Machines 

6.4. Liquid State Machines 

7. Reinforcement Learning 

7.1. Introduction to Reinforcement Learning 

7.2. Q-Learning 

8. Evolutionary programming 

8.1. Introduction to evolutionary computing 

8.2. Genetic Algorithms 

9. Fuzzy Inference Systems 

9.1. Introduction to Fuzzy Logic 

9.2. Fuzzy control systems 

10. Online distributed streaming machine learning 

10.1. Machine Learning in Real-Time Big Data Analytics 

11. Immunological Computation and Artificial Immune Systems 

12. Neuromorphic Systems and Spiking Neural Networks 

 

 

 



Page | 2  
 

1. Introduction to Artificial Intelligence and Machine Learning 

What is Artificial Intelligence?  

According to Wikipedia: 

i.e. usually refers to the ability of a computer to learn a specific task from data or 
experimental observation. But generally, computational intelligence is a set of nature-
inspired computational methodologies and approaches to address complex real-world 
problems to which mathematical or traditional modeling cannot offer explicit solutions.  

But what is intelligence?  

Chess-playing GO playing 

 
60’s vision of intelligence: machine 
beating humans 
today achieved through brute force 
search and sorting on even phone CPU 
 

 
the ultimate game mastered by humans, 
exponential solution search space 
2016 a PC running artificial neural 
networks beats the best human player  

 

 

 

 
 

But why is it computational? 

Transferring principles from biology and its solutions to problems into computer 
systems. 

 

In a formal way, how can we describe intelligence?  

From a computational point of view, intelligence can be described as the superposition 
of all processing steps applied to the input a system receives to compute an output.  
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In computation theory this will be equivalent to a Turing machine: a mathematical 
model of a hypothetical computing machine which can use a predefined set of rules to 
determine a result from a set of input variables. 

This formalism has also generated a test for machine intelligence, the Turing Test 
which states that: a machine is intelligent is able to exhibit intelligent behavior similar 
to that of a human. 

The focus of the class and brief summary 

During the class we will discuss methods of processing input to extract meaning, 
typically in biologically inspired ways and emphasize differences from traditional 
computing. 

Sorting 

 Different strategies for sorting 

 Advantages and disadvantages on large datasets 

 

Searching in graphs 

 Graph traversal algorithms 

 Dynamic Programming 

 

Neural networks 

 Architecture 
o Single neuron processing 
o Multi-layer neural 

networks 

 Tasks 
o Classification 
o Regression (function approximation) 

 Learning (supervised) 
o The system has the correct (expected) 

answer and can improve its estimate and 
take decisions 
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Neural networks 

 Learning (unsupervised) 
o The system doesn’t have the correct (expected) answer, yet such a 

system can: 
 learn the underlying structure of the data  

 
 
 
 

 extract 
underlying clusters 

 
 
 
 
 
 
 

 reconstruct distorted patterns after previously learning them 

 

 
 

 

 

 

 

Radial Basis Functions 

Radial basis functions can take complex forms (e.g. Gaussian - real valued functions 
whose output depends on the distance from a particular point) and usually used for 
function approximation. 
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Fuzzy systems 

How does human perception work? 

The characteristics of human's answer 
will be: 

 Imprecise / vague 

 Involving modifier/hedge of 
linguistic term (quite, fairly, too, 
very, etc.) 

 Implies uncertainty 

Fuzzy logic is based on uncertain reasoning using linguistic terms and rules based on 
human-like reasoning: IF x THEN y. 

Evolutionary algorithms 

Mimic biological evolution and its mechanisms for combining genetic material towards 
survival of the fittest. Used in optimization problems for which little is known about the 
underlying function. 

 

 

 

  

 

 

Reinforcement Learning 

Studies how agents ought to take actions in an environment so as to maximize some 
notion of cumulative reward. 
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Statistical Learning 

Framework for machine learning drawing from the fields of statistics and functional 
analysis dealing with the problem of finding a predictive function based on data. 

Assumes collecting large amounts of data to recognize complex patterns, e.g. 
classification using Support Vector Machines. 

 

 

 

 

 

 

Online/Streaming Machine Learning 

Stream processing paradigm simplifies parallel software and hardware by restricting 

the parallel computation that can be performed.  

Given a sequence of data (a stream), a series of operations (functions) is applied 

to each element in the stream, in a declarative way, we specify what we want to 

achieve and not how. 
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Immunological Computation 

Artificial Immune Systems (AIS) is a diverse area of research that attempts to bridge the 

divide between immunology and engineering and are developed through the application of 

techniques such as mathematical and computational modeling of immunology, 

abstraction from those models into algorithm (and system) design and implementation in 

the context of engineering. AIS has become known as an area of computer science and 

engineering that uses immune system metaphors for the creation of novel solutions to 

problems. 

 

 

Neuromorphic Computing  

Neuromorphic engineering is concerned with the design and fabrication of artificial 
neural systems whose architecture and design principles are based on those of 
biological nervous systems. Neuromorphic systems of neurons and synapses can be 
implemented in the electronic medium CMOS (complementary metal oxide 
semiconductor) using hybrid analog/digital VLSI (very large-scale integrated) 
technology.  

Asynchronous communication scheme between two chips (i.e. artificial neurons) using 
the address–event representation (AER). 
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From a computational point of view, intelligence can be described as the superposition 
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In computation theory this will be equivalent to a Turing machine: a mathematical 
model of a hypothetical computing machine which can use a predefined set of rules to 
determine a result from a set of input variables. 

This formalism has also generated a test for machine intelligence, the Turing Test 
which states that: a machine is intelligent is able to exhibit intelligent behavior similar 
to that of a human. 

The focus of the class and brief summary 

During the class we will discuss methods of processing input to extract meaning, 
typically in biologically inspired ways and emphasize differences from traditional 
computing. 

Sorting 

• Different strategies for sorting 
• Advantages and disadvantages on large datasets 

 

Searching in graphs 

• Graph traversal algorithms 
• Dynamic Programming 

 

Neural networks 

• Architecture 
o Single neuron processing 
o Multi-layer neural 

networks 
• Tasks 

o Classification 
o Regression (function approximation) 

• Learning (supervised) 
o The system has the correct (expected) 

answer and can improve its estimate and 
take decisions 
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Neural networks 

• Learning (unsupervised) 
o The system doesn’t have the correct (expected) answer, yet such a 

system can: 
 learn the underlying structure of the data  

 
 
 
 

• extract 
underlying clusters 

 
 
 
 
 
 
 

• reconstruct distorted patterns after previously learning them 

 

 
 

 

 

 

 

Radial Basis Functions 

Radial basis functions can take complex forms (e.g. Gaussian - real valued functions 
whose output depends on the distance from a particular point) and usually used for 
function approximation. 
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Fuzzy systems 

How does human perception work? 

The characteristics of human's answer 
will be: 

• Imprecise / vague 
• Involving modifier/hedge of 

linguistic term (quite, fairly, too, 
very, etc.) 

• Implies uncertainty 

Fuzzy logic is based on uncertain reasoning using linguistic terms and rules based on 
human-like reasoning: IF x THEN y. 

Evolutionary algorithms 

Mimic biological evolution and its mechanisms for combining genetic material towards 
survival of the fittest. Used in optimization problems for which little is known about the 
underlying function. 

 

 

 

  

 

 

Reinforcement Learning 

Studies how agents ought to take actions in an environment so as to maximize some 
notion of cumulative reward. 
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Statistical Learning 

Framework for machine learning drawing from the fields of statistics and functional 
analysis dealing with the problem of finding a predictive function based on data. 

Assumes collecting large amounts of data to recognize complex patterns, e.g. 
classification using Support Vector Machines. 
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2. Traditional computation  

A sorting algorithm is an algorithm that organizes elements of a sequence in a certain 
order. Since the early days of computing, the sorting problem has been one of the 
main battlefields for researchers. The basic metric usually used in the analysis of 
algorithms is depicted in the following figure. 

 

The reason behind this is not only the need of solving a very common task but also 
the challenge of solving a complex problem in the most efficient way (in terms of 
memory usage and time). 

2.1 Sorting algorithms 

Bubble sort 

The bubble sort makes multiple passes through a list. It compares adjacent items and 
exchanges those that are out of order. Each pass through the list places the next 
largest value in its proper place. In essence, each item “bubbles” up to the location 
where it belongs.  

The basic process in depicted in the following figure. The shaded items are being 
compared to see if they are out of order. It is important to note that once the largest 
value in the list is part of a pair, it will continually be moved along until the pass is 
complete. 
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Insertion sort 

Insertion sort always maintains a sorted sublist in the lower positions of the list. Each 
new item is then “inserted” back into the previous sublist such that the sorted sublist 
is one item larger. 

The basic process in depicted in the following figure. The shaded items represent the 
ordered sublists as the algorithm makes each pass. 
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Merge sort 

It is based on recursion and implements the Divide and Conquer strategy as a way to 
improve the performance of sorting algorithms. 

Merge sort is a recursive algorithm that continually splits a list in half. If the list is empty 
or has one item, it is sorted by definition (the base case). If the list has more than one 
item, we split the list and recursively invoke a merge sort on both halves. Once the two 
halves are sorted, the fundamental operation, called a merge, is performed. Merging 
is the process of taking two smaller sorted lists and combining them together into a 
single, sorted, new list. The basic process in depicted in the following figure. 

 

 

 

Divide 

 

 

 

 

 

 

 

 Conquer 
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Comparison among sorting algorithms in terms of complexity 

 

 

2.2 Graph search algorithms 

Graphs and their formal definition 

Graphs can be used to represent many interesting things about our world, including 
systems of roads, airline flights from city to city, how the Internet is connected, or even 
the sequence of classes you must take to complete a major in computer science.  

In this section we will formally define a graph and its components.  

Vertex 

A vertex (also called a “node”) is a fundamental part of a graph. It can have a name, 
which we will call the “key.” A vertex may also have additional information. We will call 
this additional information the “payload.” 

Edge 

An edge (also called an “arc”) is another fundamental part of a graph. An edge 
connects two vertices to show that there is a relationship between them. Edges may 
be one-way or two-way. If the edges in a graph are all one-way, we say that the graph 
is a directed graph, or a digraph. The class prerequisites graph shown above is clearly 
a digraph since you must take some classes before others. 
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Weight 

Edges may be weighted to show that there is a cost to go from one vertex to another. 
For example in a graph of roads that connect one city to another, the weight on the 
edge might represent the distance between the two cities. 

Path 

A path in a graph is a sequence of vertices that are connected by edges. 

Cycle 

A cycle in a directed graph is a path that starts and ends at the same vertex. 

With those definitions in hand we can formally define a graph. A graph can be 
represented by G where G = (V, E). For the graph G, V is a set of vertices and E is a 
set of edges. Each edge is a tuple (v, w) where w, v ∈ V. We can add a third component 
to the edge tuple to represent a weight. A subgraph s is a set of edges e and vertices 
v such that e ⊂ E and v ⊂ V. A sample graph is shown in the following figure. 

 

 

Representing graphs: Adjacency matrix 

One of the easiest ways to implement a graph is to use a two-dimensional matrix. In 
this matrix implementation, each of the rows and columns represent a vertex in the 
graph. The value that is stored in the cell at the intersection of row v and column w 
indicates if there is an edge from vertex v to vertex w. When two vertices are connected 
by an edge, we say that they are adjacent. The adjacency matrix for the previously 
introduced graph is depicted in the following diagram. 
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Representing graphs: Adjacency list 

A more space-efficient way to implement a sparsely connected graph is to use an 
adjacency list. In an adjacency list implementation we keep a master list of all the 
vertices in the Graph object and then each vertex object in the graph maintains a list 
of the other vertices that it is connected to. The adjacency list for the previously 
introduced graph is shown in the following diagram. 

 

 

 

 

 

 

 

 

 

 

 

The advantage of the adjacency list implementation is that it allows us to compactly 
represent a sparse graph. The adjacency list also allows us to easily find all the links 
that are directly connected to a particular vertex. 



Page | 10  
 

Algorithms on graphs 

Graphs can be used to model many types of relations and processes in physical, 
biological, social and information systems. Many practical problems can be 
represented by graphs. One interesting problem is graphs search, or graph traversal. 
It refers to the process of visiting (checking and/or updating) each vertex in a graph. 
Such traversals are classified by the order in which the vertices are visited. 

Breadth First Search (BFS) 

Breadth first search (BFS) is one of the easiest algorithms for searching a graph. Given 
a graph G and a starting vertex s, a breadth first search proceeds by exploring edges 
in the graph to find all the vertices in G for which there is a path from s. The remarkable 
thing about a breadth first search is that it finds all the vertices that are a distance k 
from s before it finds any vertices that are a distance k+1. One good way to visualize 
what the breadth first search algorithm does is to imagine that it is building a tree, one 
level of the tree at a time. A breadth first search adds all children of the starting vertex 
before it begins to discover any of the grandchildren. 

To keep track of its progress, BFS colors each of the vertices white, gray, or black. All 
the vertices are initialized to white when they are constructed. A white vertex is an 
undiscovered vertex. When a vertex is initially discovered it is colored gray, and when 
BFS has completely explored a vertex it is colored black. This means that once a 
vertex is colored black, it has no white vertices adjacent to it. A gray node, on the other 
hand, may have some white vertices adjacent to it, indicating that there are still 
additional vertices to explore. The basic process in depicted in the following figure. 

 

Depth First Search (DFS) 

The goal of DFS is to search as deeply as possible, connecting as many nodes in the 
graph as possible and branching where necessary. As with the breadth first search 
our depth first search makes use of predecessor links to construct the tree. The 
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difference is that the DFS introduces the vertices at the beginning of the queue instead 
of the end. The basic process in depicted in the following figure. 

 

Dijkstra’s Algorithm 

Dijkstra’s algorithm is an iterative algorithm that provides us with the shortest path from 
one particular starting vertex to all other vertices in the graph. This algorithm extends 
the previously introduced approaches by introduces a cost on each edge. The basic 
process in depicted in the following figure. 

 

A* algorithm 

A* (pronounced "A - star") is one of the most popular methods for finding the shortest 
path between two locations in a mapped area.  A* was developed in 1968 to combine 
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heuristic approaches like Best-First-Search (BFS) and formal approaches like 
Dijsktra's algorithm. 

It uses a cost function, the sum of the path cost and a heuristic, such as Cartesian 
distance to goal. This algorithm will guide the search and will not explore the entire 
solution space as Dijkstra’s. 
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3. Supervised neural computation 

3.1 Biological neurons vs. artificial neurons 
Neural networks have a remarkable ability to extract meaning from complex, 
imprecise, and often noisy data. They are able to learn patterns and trends 
governing the data which are typically not visible to humans. This is due to their ability 
to generalize and to respond to unexpected inputs/patterns. 

The brain is a highly complex, nonlinear, and parallel computer (information-
processing system). It has the capability to organize its structural constituents, known 
as neurons, so as to perform certain computations (e.g., pattern recognition, 
perception, and motor control) many times more efficient than the fastest digital 
computer in existence today. On short timescales, one can conceive of a single 
neuron as a computational device that maps inputs at its synapses into a sequence 
of action potentials or spikes. 

A biological neuron and its physiological properties (e.g. membrane voltage) 

 

What type of computation happens inside a cell?   

 

Input signal (i.e. stimulus) 

Cell membrane voltage changes 

Output (i.e. spike / action potential) 
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An artificial neuron emulates the process of collecting input signals (i.e. pre-
synaptic spikes) and providing an output after reaching a threshold (i.e. post-
synaptic spike). 

 

The net input of the neuron is given by 

𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑝𝑝𝑖𝑖𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 𝑝𝑝1𝑤𝑤1 + 𝑝𝑝2𝑤𝑤2 + ⋯+ 𝑝𝑝𝑛𝑛𝑤𝑤𝑛𝑛 

whereas the output of the neuron is computed as 

𝑜𝑜𝑜𝑜𝑛𝑛 = 𝑓𝑓(𝑛𝑛𝑛𝑛𝑛𝑛 − 𝜃𝜃) 

Although the history of the artificial neural networks stems from the 1940s, the decade 
of the first electronic computer, the first significant step took place in 1958, when 
Rosenblatt introduced the first concrete neural model, the perceptron. 
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An artificial neuron performs a (nonlinear) mapping from input to output, typically 
from a high-dimensional input space to a low-dimensional (often one-
dimensional) output space. 

Mathematically, the computation described by an artificial neuron describes the 
calculation of a weighted sum of its inputs and the application of an activation 
(squashing) function that determines the output of the neuron. 

In most cases the activation functions are monotonically increasing functions 
with different effects on the output of the neuron. 

 

What can an “artificial neuron” compute?  

A two-input perceptron with one neuron which has a “step” activation function is 
capable to separate / classify input patterns (e.g. in the simplest case group inputs 
in classes, <0 or ≥0).  Such a classification implies a decision / separation 
boundary, which is determined by the input vectors for which the net input is zero. 
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Considering linearly separable classes a single neuron perceptron can implement 
problems emulating logic gates, such as AND and OR functions. 

 

In order to construct linear decision boundaries that explicitly try to separate the 
data into different classes as well as possible, we need to train the system by 
updating the weights (both for inputs and the bias). In other words, the system 
needs to find a separating hyperplane by minimizing the distance of misclassified 
points to the decision boundary. 

3.2 Learning in artificial neurons 
The training process is based on the Gradient Descent Learning Rule, which 
assumes minimizing an error function of the mismatch between the target and 
the actual output of the neuron. 

The actual error metric is given by 

𝐸𝐸(𝑛𝑛) = ��𝑛𝑛𝑝𝑝(𝑛𝑛) − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝(𝑛𝑛)�
2

𝑃𝑃𝑇𝑇

𝑝𝑝=1

, 

where tp is the target value for pattern p, and outp is the currently computed neuron 
output for input pattern p from the training set. The error metric is squared, such that 
all errors are positive and large errors are stronger penalized compared to small errors. 

For every single training pattern, weight update uses this rule to follow the negative 
Gradient in weight space; i.e. ultimately go to the position in weight space with smallest 
output error. 
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𝑤𝑤𝑖𝑖(𝑛𝑛) = 𝑤𝑤𝑖𝑖(𝑛𝑛 − 1) + ∆𝑤𝑤𝑖𝑖(𝑛𝑛) 

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = 𝜂𝜂 �
−𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑖𝑖(𝑛𝑛)

� 

If the classes are linearly separable, the algorithm converges to a separating 
hyperplane in a finite number of steps. 

What does learning mean? Basically, a learning process assumes fitting a model to 
data. In the context of neural computation, the model is the neuron or the neural 
network, and the fitting process assumes the update of weights. 

In order to understand this basic process, we provide a simple example that uses the 
dependency between the weight and the height of a group of people as training data. 
The neural system should be able to extract such a mapping from the data. 

 

How do future (currently unknown) data points fit? What is the mapping between the 
weight and the height? There are several possible “models” (multiple lines) that can fit 
the data; each characterized by a slope (SL) and an intercept (IC). 

In these terms we need to define a metric that decides how good or how bad our 
particular choice of the model is. A typical error function is the sum squared error 
between the true value and the output (as explained above): 

𝐸𝐸𝐸𝐸𝐸𝐸 = � �𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛𝑝𝑝 − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝�
2

𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝

 

Finding the “best” combination of SL and IC minimizes the “error” of the model. 
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How do we achieve this? In order to guide the search for the suitable parameters 
Gradient Descent is used:  

 

1. Pick random initial values for IC/SL (e.g. x0)  
2. Calculate the gradient with respect to each model 

parameter (i.e. IC,SL)  
3. Update the parameters in the direction of the negative 

gradient 
4. Repeat 2 and 3 until convergence (e.g. x1...4) 

 

 

How does the process of gradient descent relate to neurons? 

As previously shown a neuron integrates the available input, inpi, weighting each 
contribution, wi.  

𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑝𝑝𝑖𝑖𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

For the previous example, we assume only one quantity as input (e.g. height) and 
predict the other quantity (e.g. weight) as output. The “linear neuron” adapts its two 
“internal weights” (w1 connected to input height; and w2 to bias input), such that w1 
and w2 become the unknown value IC and SL that characterize the line which 
approximates the data. 

This simple example can be formalized to a learning rule in a single neuron. 

We define the error signal for the entire dataset, E, and compute the error for each 
single training example, Ep, using the current set of weights wi: 
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𝐸𝐸 = � �𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛𝑝𝑝 − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝�
2

𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝

→ 𝐸𝐸𝑝𝑝 = �𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛𝑝𝑝 − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝�
2 

Given the error signal, we compute the gradient (derivative) with respect to the input 
weights of a linear neuron (i.e. here for simplicity the activation function is linear) 

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = 𝜂𝜂𝐺𝐺𝑖𝑖(𝑛𝑛), with 𝐺𝐺𝑖𝑖(𝑛𝑛) = 𝜕𝜕𝐸𝐸𝑝𝑝(𝑝𝑝)
𝜕𝜕𝑤𝑤𝑖𝑖(𝑝𝑝), 

which we can rewrite as (chain rule) 

𝐺𝐺𝑖𝑖(𝑛𝑛) = 𝜕𝜕𝐸𝐸𝑝𝑝(𝑝𝑝)
𝜕𝜕𝑤𝑤𝑖𝑖(𝑝𝑝) = 𝜕𝜕𝐸𝐸𝑝𝑝(𝑝𝑝)

𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝(𝑝𝑝) ∙
𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝(𝑝𝑝)
𝜕𝜕𝑤𝑤𝑖𝑖(𝑝𝑝) with 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝(𝑛𝑛) = ∑ 𝑝𝑝𝑖𝑖(𝑛𝑛) ∙ 𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1 (𝑛𝑛) 

Analyzing both factors individually yields 

(1) 𝜕𝜕𝐸𝐸𝑝𝑝(𝑝𝑝)
𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝(𝑝𝑝) = 𝜕𝜕�𝑝𝑝𝑡𝑡𝑜𝑜𝑡𝑡𝑝𝑝−𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝�

2

𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝(𝑝𝑝) = 2 ∙ �𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛𝑝𝑝 − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝� ∙ (−1) = −2 ∙ �𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛𝑝𝑝 − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝� 

and 

(2) 𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝(𝑝𝑝)
𝜕𝜕𝑤𝑤𝑖𝑖(𝑝𝑝) =

𝜕𝜕∑ 𝑝𝑝𝑗𝑗(𝑝𝑝)∙𝑤𝑤𝑗𝑗𝑗𝑗=1 (𝑝𝑝)

𝜕𝜕𝑤𝑤𝑖𝑖(𝑝𝑝) = 𝑝𝑝𝑖𝑖 (only for j=i the derivative exists) 

Combined, the gradient in the direction of the weight wi is given by 

𝐺𝐺𝑖𝑖(𝑛𝑛) =
𝜕𝜕𝐸𝐸𝑝𝑝(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑖𝑖(𝑛𝑛)

=
𝜕𝜕𝐸𝐸𝑝𝑝(𝑛𝑛)
𝜕𝜕𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝(𝑛𝑛)

∙
𝜕𝜕𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑖𝑖(𝑛𝑛)

= −2 ∙ �𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛𝑝𝑝 − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝� ∙∈ 𝑝𝑝𝑖𝑖 

and we can use this to adapt weights, such that the error value is minimized. 

This approach holds also for neurons with non-linear activation functions, as long 
as this activation function is differentiable. 

 

3.3 From single neurons to neural networks 
So far we introduced a simple neuron that can adapt to available data; if and only if 
the distribution of data matches its activation function (linear in the example above). 
The advanced goal is to learn “arbitrary” data, not just such that happens to fit the 
given neuron transfer function. This we achieve by combining multiple neurons in a 
neural network using feed forward connectivity between the neuron layers. In such 
a structure each neuron represents some aspect of the data and the neurons higher 
up in the hierarchy combine these. 
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The manner in which the neurons of a neural network are structured is intimately linked 
with the learning algorithm used to train the network. In a layered neural network, 
the neurons are organized in the form of layers. The simplest form of a layered network 
has an input layer of (external) source nodes that projects directly to an output layer 
of neurons (computational nodes), but not vice versa. This network is strictly 
feedforward! More complex feedforward neural networks additionally contain one or 
more hidden layers, whose computational nodes are correspondingly called hidden 
neurons or hidden units; the term “hidden” refers to the fact that this part of the neural 
network is not seen directly from either the input or the output of the network. Another 
class of network structures are recurrent neural networks with at least one feedback 
loop; we will analyze them when introducing unsupervised learning algorithms 
(Chapter 4). 

3.4 Learning in neural networks: 
Error Backpropagation in Multi-Layer Neural Networks 

We have shown a method to train weights for a single neuron in chapter 3.2 which 
uses the desired output for weight updates. This method does not directly work in 
neuronal networks, as we don’t know what neurons in the hidden layers should do. 
We do know the network’s desired final output (i.e. the training data output value); but 
it is completely unclear what neurons inside the network should compute to finally 
reach that output. Therefore we cannot use the learning rule from 3.2, but instead 
backward propagate the learning error from output towards input, depending on 
activity of neurons. This idea is called “error backpropagation algorithm”. 

The error backpropagation algorithm was originally introduced in the 1970s, but its 
importance wasn't fully appreciated until a famous paper published 1986 by David 
Rumelhart, Geoffrey Hinton, and Ronald Williams. The backpropagation algorithm 
searches the minimum of the error function in weight space, using gradient 
descent. The particular combination of weights which minimizes the error function is 
considered to be the solution for learning a representation of data. Since this method 
requires computation of the gradient of the error function at each iteration step, we 
must guarantee continuity and differentiability of the error function. 



Page | 12  
 

The goal of backpropagation is to compute the partial derivatives of the cost function 
with respect to any weights in the network. In order to introduce the formalism of 
backpropagation we introduce the following notations: 

 

1. Definitions 
(1) The error signal for a certain unit i at training time t is given by: 

𝛿𝛿𝑖𝑖(𝑛𝑛) =
−𝜕𝜕𝐸𝐸𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)

 

where the net input to neuron i is 

𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛) = �𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛) ∙ 𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛)
𝑖𝑖∈𝐴𝐴

 

(2) The weight change for weight wik is given by 

∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛) =
−𝜕𝜕𝐸𝐸𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛)

 

 
2. Understanding the gradient for weight change 

Starting from the weight change at the neuron level we can infer the representation of 
the update in terms of the output of the previous layer and the error at the current 
neuron: 

∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛) =
−𝜕𝜕𝐸𝐸𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛)

=
−𝜕𝜕𝐸𝐸𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)

∙
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛)

= 𝛿𝛿𝑖𝑖(𝑛𝑛)𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛) 

with the error signal for node i computed as 
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−𝜕𝜕𝐸𝐸𝑖𝑖(𝑝𝑝)
𝜕𝜕𝑛𝑛𝑡𝑡𝑝𝑝𝑖𝑖(𝑝𝑝) = 𝛿𝛿𝑖𝑖(𝑛𝑛)  (by definition (1)) 

𝜕𝜕𝑛𝑛𝑡𝑡𝑝𝑝𝑖𝑖(𝑝𝑝)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) = 𝜕𝜕∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝)∙𝑝𝑝𝑜𝑜𝑝𝑝𝑖𝑖(𝑝𝑝)𝑖𝑖∈𝐴𝐴𝑖𝑖

𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) = 𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛)  (non-zero only for l=k) 

 
3. Forward activation of the network 

In this phase the “input” is applied to the bottom layer, and we compute all neurons’ 
outputs layer by layer towards the target output: 

𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛) = 𝑓𝑓𝑖𝑖�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)� = 𝑓𝑓𝑖𝑖 ��𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛) ∙ 𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛)
𝑖𝑖∈𝐴𝐴

� 

 
4. Calculating the error of the output neuron 

For the final output the dataset contains a desired value, targeto, hence we can 
compute the error signal at the network output, outo, (similar to chapter 3.2): 

𝛿𝛿𝑝𝑝(𝑛𝑛) =
−𝜕𝜕𝐸𝐸𝑝𝑝(𝑛𝑛)
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝(𝑛𝑛)

= 2 ∙ (𝑛𝑛𝑡𝑡𝐸𝐸𝑡𝑡𝑛𝑛𝑛𝑛𝑝𝑝 − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝) 

Note that for simplicity we assume a linear output unit (without loss of generality). 

 
5. Propagating the error back through the network  

After computing the error at the network output we propagate the error signal back 
through the network (hence the name of the learning mechanism). 

𝛿𝛿𝑖𝑖(𝑛𝑛) =
−𝜕𝜕𝐸𝐸𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)

 

Applying the Chain Rule: 

𝛿𝛿𝑖𝑖(𝑛𝑛) =
𝜕𝜕𝐸𝐸𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)

= �
−𝜕𝜕𝐸𝐸𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗(𝑛𝑛)

∙
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗(𝑛𝑛)
𝜕𝜕𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛)

∙
𝜕𝜕𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)𝑗𝑗∈𝑃𝑃

 

Where 

(1) −𝜕𝜕𝐸𝐸𝑖𝑖(𝑝𝑝)
𝜕𝜕𝑛𝑛𝑡𝑡𝑝𝑝𝑗𝑗(𝑝𝑝) = 𝛿𝛿𝑗𝑗(𝑛𝑛)  (by definition (1)) 

 

(2) 𝜕𝜕𝑛𝑛𝑡𝑡𝑝𝑝𝑗𝑗(𝑝𝑝)
𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑖𝑖(𝑝𝑝) = 𝜕𝜕∑ 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)∙𝑝𝑝𝑜𝑜𝑝𝑝𝑗𝑗(𝑝𝑝)𝑗𝑗∈𝑃𝑃

𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑖𝑖(𝑝𝑝) = 𝑤𝑤𝑗𝑗𝑖𝑖  (only nonzero for m=i) 

 
(3) 𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑖𝑖(𝑝𝑝)

𝜕𝜕𝑛𝑛𝑡𝑡𝑝𝑝𝑖𝑖(𝑝𝑝) = 𝜕𝜕𝜕𝜕�𝑛𝑛𝑡𝑡𝑝𝑝𝑖𝑖(𝑝𝑝)�
𝜕𝜕𝑛𝑛𝑡𝑡𝑝𝑝𝑖𝑖(𝑝𝑝) = 𝑓𝑓′�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)� 
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Combining those three equations we compute the error signal for a neuron i in the 
network: 

𝛿𝛿𝑖𝑖(𝑛𝑛) = �𝛿𝛿𝑗𝑗(𝑛𝑛) ∙ 𝑤𝑤𝑗𝑗𝑖𝑖(𝑛𝑛) ∙ 𝑓𝑓′�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)�
𝑗𝑗∈𝑃𝑃

 

and given the activation function f is independent of the jth node, we can rewrite the 
error: 

𝛿𝛿𝑖𝑖(𝑛𝑛) = 𝑓𝑓′�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)� ∙�𝛿𝛿𝑗𝑗(𝑛𝑛) ∙ 𝑤𝑤𝑗𝑗𝑖𝑖(𝑛𝑛)
𝑗𝑗∈𝑃𝑃

 

 

 We observe that the error for neuron i (𝛿𝛿𝑖𝑖) only depends on the known error 
of neurons in “higher” levels j of the network hierarchy (𝛿𝛿𝑗𝑗). 

 

6. Computing the weight update for weight anterior to posterior (k  i) 

Computing the weight update using the weight increment and the error signal 

∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛) = 𝛿𝛿𝑖𝑖(𝑛𝑛) ∙ 𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛)  𝛿𝛿𝑖𝑖(𝑛𝑛) = 𝑓𝑓′�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)� ∙ ∑ 𝛿𝛿𝑗𝑗(𝑛𝑛) ∙ 𝑤𝑤𝑗𝑗𝑖𝑖(𝑛𝑛)𝑗𝑗∈𝑃𝑃  

The final weight update is 

∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛) = 𝑓𝑓′�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)� ∙�𝛿𝛿𝑗𝑗(𝑛𝑛) ∙ 𝑤𝑤𝑗𝑗𝑖𝑖(𝑛𝑛) ∙
𝑗𝑗∈𝑃𝑃

𝑓𝑓�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)� 

or 

∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛) = 𝑓𝑓′�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)� ∙�𝛿𝛿𝑗𝑗(𝑛𝑛) ∙ 𝑤𝑤𝑗𝑗𝑖𝑖(𝑛𝑛) ∙
𝑗𝑗∈𝑃𝑃

𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛) 

This update rule allows training of feedforward multilayer neural networks, for tasks 
such as regression (function approximation) and classification. 

 

3.5 Supervised learning: tips and tricks  
The main problem in using artificial neural networks is parameter tuning, because 
there is no definite and explicit method to select optimal values for the network 
parameters. In this section we will discuss design choices regarding data pre-
processing, weight initialization, and error functions. 
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1. Weight initialization  

A possible option is to set all the initial weights to zero (or any other constant). This 
is a fatal mistake, because if every neuron in the network computes the same 
output, they will also all learn based on identical gradients during error-
backpropagation and undergo the exact same parameter updates. In other words, 
there is no source of asymmetry between neurons if their weights are initialized the 
same; they all act as they are a single (highly redundant) neuron. 

A common method to break symmetry early on is to initialize all neurons’ weights 
to small random numbers. Thereby, neurons all behave uniquely, so they will 
compute distinct updates and develop into diverse contributors of the full network. 

Use small weights, as small weights are likely to get the net input into the steep 
region of the neurons’ transfer functions. The gradient will initially be large, so 
neurons quickly differentiate. 

Tip: initialize the weight with small random numbers, e.g. -0.001…0.001 

2. Input/Output normalization 

Normalization refers to normalizing each of the data dimensions so that they are 
all on approximately similar scale. There are two common ways of achieving this 
normalization. One is to divide each dimension by its standard deviation, once it 
has been zero-centered. Another form of this preprocessing normalizes each 
dimension so that the min and max along the dimension is -1 and 1 respectively. 

Tip: use a linear (final) output neuron transfer, and normalize all input data 
to [-1 .. +1]. 

3. Small weight updates 

Weight updates are controlled by a parameter, η(t), the learning rate, which 
determines how fast the weight change will take place. At every update only a 
single data point is processed; hence a “full update” will match this point well but 
neglect others. The learning rate allows small updates towards consecutive 
examples, which improves overall network behavior. The learning rate should 
typically be very small. 

Tip: use a constant small learning rate, e.g. η(t)=0.001 
 

4. Avoiding local minima in weight space 

In training neural networks (as in any local gradient based method) the training 
might get stuck in local minima, instead of finding a global minimum. A technique 
called Simulated Annealing might help to overcome local minima but regularly 
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perturbing the current set of weight. This perturbation (“shaking”) shall initially be 
large and decay with training success, so that initially the network likely “jumps” out 
of local minima; but later likely stays within a found solution. 

Tip: use small occasional random perturbation (“shaking”) of weights to 
escape local minima. 
 

5. Network size 

Number of Input channels and output channels given by problem data set (this we 
cannot decide, but it is given by the problem to be solved). 

The important metric for the design of neural networks are the number of neurons, 
or more precise the number of free parameters. How do we decide on what 
architecture to use when faced with a practical problem? How many layers? How 
many neurons per layer? First, note that as we increase the size and number of 
layers in a neural network, the capacity of the network increases. That is, the 
space of representable functions grows, since the neurons can collaborate to 
express many different functions. But there is no theory yet to tell the designer 
how many hidden units are needed to approximate any given function. 

Some sources and articles offer "rules of thumb" for choosing size and topology 
of a neural network: 

• "A rule of thumb is for the size of this [hidden] layer to be somewhere 
between the input layer size ... and the output layer size ..." (Blum, 
1992, p. 60). 

• "you will never require more than twice the number of hidden units as you 
have inputs" in an MLP with one hidden layer (Swingler, 1996, p. 53) 

• "How large should the hidden layer be? One rule of thumb is that it should 
never be more than twice as large as the input layer." (Berry and Linoff, 
1997, p. 323) 

Tip: use small “fan-out” after input layer (a few more neurons than input 
signals; at most 2x) and slowly reduce neurons to required output size.  

 
6. Overtraining/overfitting  

The final and often most critical issue in developing a neural network is 
generalization: how well will the network make predictions for cases that are not 
shown in the training set? Artificial neural networks can suffer from either 
underfitting or overfitting.  
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A network that is not sufficiently complex can fail to fully detect the underlying signal 
in a data set, leading to underfitting. A network that is too complex may fit the noise 
(beyond fitting the signal), which causes overfitting. Overfitting is especially 
dangerous because it can easily cause terrible predictions will within the range of 
the training data (see how the prediction differs e.g. for -0.44 input). 

The best way to avoid overfitting is to use large amounts of training data. Given 
a fixed amount of training data, there are several approaches to avoiding 
underfitting and overfitting, and hence improve generalization: model selection, 
jittering, weight decay, Bayesian learning, combining networks, and – most 
commonly used - Early stopping. 

Early stopping 

While training on data, the network seems to get better and better, i.e., the error 
on the training set decreases. The network learns to represent every single data 
point as good as possible, which ultimately results in a lookup table. We would like 
to find the time of training when the generalization ends and learning of individual 
data points begins. 

For this, all available data is divided into two subsets, where 70% of all data 
samples are used for training, and 30% of all data samples are used for 
independent testing. The first subset – the training set –is used for computing the 
gradient and updating the network weights and biases as before. The second 
subset is the testing set, which is never used to train/update any weights. This 
testing set is only used to compute remaining error of the network performance 
given the current training state. Note that we can compute the error, as we know 
input patter and desired output for the test data samples. The error on the testing 
set (called “validation error”) is monitored during the training process.  
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The validation error normally decreases during the initial phase of training, as does 
the training set error. However, when the network begins to overfit the data, the 
error on the validation set typically begins to rise. At this point in time the network 
achieves best generalization abilities and learning needs to stop (“early stopping”). 
Any further training will only lead to fitting individual data-point (see overfitting 
above), which reduces generalization abilities. 
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4. Unsupervised neural computation 

4.1. Introduction to unsupervised learning 

Just as there are different ways in which we ourselves learn from our own surrounding 
environments, so it is with neural networks. In a broad sense, we may categorize the 
learning processes through which neural networks function as follows: learning with 
a teacher and learning without a teacher. These different forms of learning as 
performed on neural networks parallel those of human learning. 

Learning with a teacher is also referred to as supervised learning. In conceptual 
terms, we may think of the teacher as having knowledge of the environment, with that 
knowledge being represented by a set of input - output examples. 

Unsupervised learning does not require target vectors for the outputs. Without input-
output training pairs as external teachers, unsupervised learning is self-organized to 
produce consistent output vectors by modifying weights. That is to say, there are no 
labelled examples of the function to be learned by the network. 

For a specific task-independent measure, once the network has become tuned to the 
statistical regularities of the input data, the network develops the ability to discover 
internal structure for encoding features of the input or compress the input data, 
and thereby to create new classes automatically. 

In many problems, such as data compression or dimensionality reduction, the 
measured data vectors are high-dimensional but we may have reason to believe that 
the data lie near a lower-dimensional manifold. Learning a suitable low-
dimensional manifold from high-dimensional data is essentially the same as 
learning this underlying source. Dimensionality reduction can also be seen as the 
process of deriving a set of degrees of freedom which can be used to reproduce 
most of the variability of a data set. 

Principal components analysis (PCA) is a classical method that provides a 
sequence of best linear approximations to a given high-dimensional observation. 
It is one of the most popular techniques for dimensionality reduction. However, its 
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effectiveness is limited by its global linearity. Unfortunately, in dealing with large 
datasets, PCA can become unmanageable in computational terms.  

Is there a way to overcome this computational limitation? Can PCA be realized in a 
neural network using an unsupervised learning algorithm?  

Nonlinear principal component analysis (NLPCA) is commonly seen as a nonlinear 
generalization of standard principal component analysis (PCA). It generalizes the 
principal components from straight lines to curves (nonlinear).  

Thus, the subspace in the original data space which is described by all nonlinear 
components is also curved. Nonlinear PCA can be achieved by using a neural 
network with an auto-associative architecture also known as autoencoder.  

Such auto-associative neural network is a multi-layer perceptron that performs an 
identity mapping, meaning that the output of the network is required to be identical to 
the input. However, in the middle of the network is a layer that works as a bottleneck 
in which a reduction of the dimension of the data is enforced. This bottleneck-layer 
provides the desired component values. 

 

In such a network the inputs (i.e.  x1, x2, x3)  are identical to the desired outputs (i.e. x1’, 
x2’, x3’). The network implements a “mapping to itself”. In such a structure if the 
number of hidden units is small the network needs to find and “efficient” 
representation. 

If the neuron in the center of the network is constrained to a linear transfer 
function it will find the direction of the first principle component (i.e. the direction 
in which the data shows the largest variance). 

Such neural networks can be used in information processing fields such as pattern 
recognition and data compression, such as face recognition or speech recognition. 
For example, consider a set of images produced by the rotation of a face through 
different angles. Clearly only one degree of freedom is being altered, and thus the 
images lie along a continuous one dimensional curve through image space. 
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In another example, for facial recognition, it has been proven that using a locally linear 
algorithm for nonlinear dimension reduction in an auto-associative network, one can 
get more precise recognition. 

 

4.2. Radial Basis Functions 

In solving a nonlinearly separable pattern-classification problem, there is usually 
practical benefit to be gained by mapping the input space into a new space of high 
enough dimension. Basically, a nonlinear mapping is used to transform a nonlinearly 
separable classification problem into a linearly separable one with high probability. 
The Radial Basis Functions (RBF) technique consists in selecting such a mapping 
function, F:  

𝑓𝑓(𝑥𝑥) =   �𝑤𝑤𝑖𝑖 

𝑁𝑁

𝑖𝑖=1

𝜙𝜙(‖𝑥𝑥 − 𝑐𝑐𝑖𝑖‖), 

where {𝜙𝜙(‖𝑥𝑥 − 𝑥𝑥𝑖𝑖‖)| 𝑖𝑖 = 1,2, … ,𝑁𝑁} is the set of N arbitrary (generally nonlinear) 
functions known as radial-basis functions, ci is the i-th center, and ‖ . ‖ denotes a 
distance metric, usually the Euclidian distance. Typical choices for radial basis 
functions are: 
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• Spline functions, 

𝜙𝜙(𝑥𝑥) =   𝑥𝑥2𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥 

• Gaussian functions, 

𝜙𝜙(𝑥𝑥) =   𝑒𝑒
−𝑥𝑥2
𝛽𝛽  

• Multi-quadratic functions, 

𝜙𝜙(𝑥𝑥) =   �(𝑥𝑥2 + 𝛽𝛽2) 

• Inverse multi-quadratic function, 

𝜙𝜙(𝑥𝑥) =   
1

�(𝑥𝑥2 + 𝛽𝛽2)
 

It has been proved that a RBF network (RBN) can approximate well any arbitrarily 
continuous function if a sufficient number of radial-basis function units are given (the 
network structure is large enough), and the network parameters are carefully chosen. 
RBN also has the best approximation property in the sense of having the minimum 
distance from any given function under approximation. 

 

In a simplified perspective, a RBN is basically approximating the input data through a 
linear combination of the k Gaussians 𝛷𝛷𝑘𝑘 with centers ck. The Gaussian “activation” is 
determined, as previously mentioned, by the Euclidian distance of an input point to the 
Gaussian center. This process, allows the projection of the input in a higher dimension 
where classification / prediction is easier.  

There are two main problems related to parameterizing such learning systems: 1) 
determining the parameters for the RBFs (i.e. ck , σk); 2) determining the weights of 
the network, wk (i.e. can be performed using Backpropagation). 

For the first problem, at design time, a narrow variance Gaussian per data sample is 
considered. Subsequently, the number of Gaussian is reduced to allow interpolation 
of the input space. But, how well is data represented by a single Gaussian? This 
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question opens a new interpretation of the Gaussian hidden units of RBNs. In a 
neurobiological context, the Gaussians correspond to sensory receptive fields. Such 
a receptive field is defined as “the region of a sensory field from which an adequate 
sensory stimulus will elicit a response”. In RBN terminology, the receptive field of a 
hidden unit is that region of the input layer of source nodes from which an adequate 
pattern will elicit a response. 

This definition applies equally well to multilayer perceptrons (MLPs) and RBNs. 
Summarizing the main aspects we can analyze comparatively MLPs and RBFs: 

 RBFs MLPs 

 

Hidden units 

 

𝑓𝑓(‖𝑥𝑥 − 𝑐𝑐𝑖𝑖‖) 

Decreasing with increasing 
distance (“localized) 

𝑓𝑓(�𝑤𝑤𝑖𝑖 

𝑁𝑁

𝑖𝑖=1

𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖) 

Usually nonlinear, 
monotonically increasing 

 

 

Output 

 

Only a few active 
contributors 

Many contributors 

Most “hidden” neurons are 
active 

Problems with local minima 

 

Network topology 

Simple 3-layer structure Many structures possible 
dependent on problem 

 

Training 

2-stage process: 

1. Finding Gaussian params 

2. Training weights 

All weights are 
simultaneously adapted 
through backpropagation  

 

4.3. Vector Quantization 

In neurobiology, during neural growth, synapses are strengthened or weakened, in a 
process usually modelled as a competition for resources. In such a learning process, 
there is a competition between the neurons to fire. More precisely, neurons compete 
with each other (in accordance with a learning rule) for the “opportunity” to respond to 
features contained in the input data. In its simplest form, such behaviour describes a 
“winner-takes-all” strategy. In such a strategy, the neuron with the greatest total input 
“wins” the competition and turns on; all the other neurons in the network then switch 
off. The aim of such learning mechanisms is to cluster the data. 
 

In a typical scenario, such behavior can be implemented with a neural network that 
consists of two layers—an input layer and a competitive layer with lateral 
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inhibition. The input layer receives the available data. The competitive layer consists 
of neurons that compete with each other.  
 

 
The basic mechanism of competitive learning is to find a winning unit and update its 
weights to make it more likely to win in future if a similar input will be given to the 
network. 
 
Vector quantization (VQ) is a form of competitive learning. Such an algorithm is able 
to discover structure in the input data. Generally speaking, vector quantization is a 
form of lossy data compression—lossy in the sense that some information contained 
in the input data is lost as a result of the compression. 

 
An input data point belongs to a certain class if its position (in the 2D space) is closest 
to the class prototype, fulfilling the Voronoi partitioning (i.e. partitioning of 
a plane into regions based on distance to points in a specific subset of the plane.  
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Algorithm: 

#1 Choose the number of clusters, M 

#2 Initialize the prototypes w1, w2,…, wn  (hint: pick random input samples but 
distributed evenly in the input space) 

#3 Repeat until “good enough” 

 #4 Randomly pick an input x 

 #5 Determine the winning prototype node k such that  

|𝑤𝑤𝑘𝑘 − 𝑥𝑥| ≤  |𝑤𝑤𝑖𝑖 − 𝑥𝑥| for all nodes i 

 #6 Update the winning prototype weights 

𝑤𝑤𝑘𝑘(𝑡𝑡 + 1) = 𝑤𝑤𝑘𝑘(𝑡𝑡) + 𝜂𝜂(𝑥𝑥 − 𝑤𝑤𝑘𝑘(𝑡𝑡)), where 𝜂𝜂 is the learning rate. 

 

4.4. Kohonen’s Self-Organizing-Maps 

Kohonen’s self-organizing map (SOM) is one of the most popular unsupervised 
neural network models. Developed for an associative memory model, it is an 
unsupervised learning algorithm with a simple structure and computational form, and 
is motivated by the retina-cortex mapping. The SOM can provide topologically 
preserved mapping from input to output spaces, such that “nearby” sensory stimuli 
are represented in “nearby” regions. 

 
External stimuli are received by various sensors or receptive fields (for example, 
visual-, auditory-, motor-, or somato-sensory), coded or abstracted by the living neural 
networks, and projected through axons onto the cerebral cortex, often to distinct parts 
of the cortex. In other words, the different areas of the cortex (cortical maps) often 
correspond to different sensory inputs, though some brain functions require collective 
responses. 
 
These networks are based on competitive learning; the output neurons of the 
network compete among themselves to be activated or fired, with the result that only 
one output neuron, or one neuron per group, is on at any one time. An output neuron 
that wins the competition is called a winner-takes-all neuron, or simply best matching 
unit. 
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In a self-organizing map, the neurons are placed at the nodes of a lattice that is usually 
one or two dimensional.  

 
 
The neurons become selectively tuned to various input patterns (stimuli) or classes 
of input patterns in the course of the competitive learning process. The locations of 
the neurons so tuned (i.e., the winning neurons) become ordered with respect to each 
other in such a way that a meaningful coordinate system for different input features is 
created over the lattice. A self-organizing map is therefore characterized by the 
formation of a topographic map of the input patterns, in which the spatial locations 
(i.e., coordinates) of the neurons in the lattice are indicative of intrinsic statistical 
features contained in the input patterns. 
 
The SOM is an optimal VQ when the neighbourhood eventually shrinks to just the 
winner, as it will satisfy the two necessary conditions for VQ (Voronoi partition and 
centroid condition). The use of the neighbourhood function makes the SOM superior 
to common VQs in two main respects. Firstly, the SOM is better at overcoming the 
under- or over-utilization and local minima problem. The second is that the SOM will 
produce a map with some ordering among the code vectors, and this gives the map 
an ability to tolerate noise in the input or retrieval patterns. 
 
Finally, once the network has become tuned to the statistical regularities of the input 
data, the network develops the ability to form internal representations for 
encoding features of the input and thereby to create new classes automatically. 
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Algorithm: 

#1 Initialize all weights wij  and define the neighborhood function 𝜙𝜙(𝑖𝑖, 𝑗𝑗) 

#2 Select input x and determine the winning unit i such that  

|𝑥𝑥 −  𝑤𝑤𝑘𝑘| ≤  �𝑥𝑥 −  𝑤𝑤𝑗𝑗� for all nodes 𝑗𝑗 ≠ 𝑖𝑖  

#3 Update weights for all units j given the winner unit i 

𝑤𝑤𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤𝑗𝑗(𝑡𝑡) + 𝜂𝜂𝜙𝜙(𝑗𝑗, 𝑖𝑖)(𝑥𝑥 − 𝑤𝑤𝑗𝑗(𝑡𝑡)), where 𝜂𝜂 is the learning rate 

#4 Repeat from step #2 until convergence is reached and update 𝜂𝜂 and 𝜙𝜙 

In a practical example such a 1D SOM network is able to cover uniformly a 2D input 
space preserving the topology. This behavior holds also for higher dimensional output 
spaces. 

 

Tips and tricks: 

• Choosing a neighborhood function 𝜙𝜙 
o Typically functions which decrease influence with distance (e.g. 

concentric squares, hexagons, and other polygonal shapes as well as 
Gaussian functions) 

o Neighborhood has to be large at the beginning (e.g. initial radius 
initialized as half size of the net) and decrease in time to 1 (convergence) 

• Learning rate 𝜂𝜂 
o Function that decreases in time (e.g. inverse time, exponential, linear) 

• Number of training steps 
o For good accuracy the number of learning steps has to be high enough, 

e.g. 500 times the number of SOM neurons 
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Typical problems: 

• Mapping into 2D – weights in the middle of the 2D lattice do not get updated 
similarly to the ones at the extremities and a “knot” appears  

 

• Mapping into a too-low dimension (e.g. 3D cube into 2D – a dimension is lost) 
 

The term self-organizing map signifies a class of mappings defined by error-theoretic 
considerations. In practice they result in certain unsupervised, competitive learning 
processes, computed by simple-looking SOM algorithms. Many industries have found the 
SOM-based software tools useful. The most important property of the SOM, orderliness of 
the input-output mapping, can be utilized for many tasks: reduction of the amount of training 
data, speeding up learning nonlinear interpolation and extrapolation, generalization, and 
effective compression of information for its transmission. 
 

4.5. Hopfield Networks 

Biological substrate 

Donald Hebb hypothesized in 1949 how neurons are connected with each other in the 
brain: “When an axon of cell A is near enough to excite a cell B and repeatedly or 
persistently takes part in firing it, some growth process or metabolic change takes 
place in one or both cells such that A’s efficiency, as one of the cells firing B, is 
increased.”, and postulated a new learning mechanism, Hebbian learning. In other 
words neural networks stores and retrieves associations, which are learned as 
synaptic connection. In Hebbian learning, both presynaptic and postsynaptic 
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neurons are involved. Human memory thus works in an associative or content-
addressable way. 

Technical perspective 

The basic Hopfield network consists of a set of neurons and a corresponding set of 
unit-time delays, forming a multiple-loop feedback system. The model is a 
recurrent neural network with fully interconnected neurons. The number of feedback 
loops is equal to the number of neurons. Basically, the output of each neuron is fed 
back, via a unit-time delay element, to each of the other neurons in the network. Such 
a structure allows the network to recognise any of the learned patterns by exposure 
to only partial or even some corrupted information about that pattern, i.e., it 
eventually settles down and returns the closest pattern or the best guess. 

In the Hopfield model it is assumed that the individual units preserve their individual 
states until they are selected for a new update. The selection is made randomly. A 
Hopfield network consists of n totally coupled units, that is, each unit is connected to 
all other units except itself. The network is symmetric because the weight wij for the 
connection between unit i and unit j is equal to the weight wji of the connection from 
unit j to unit i. This can be interpreted as meaning that there is a single bidirectional 
connection between both units. The absence of a connection from each unit to itself 
avoids a permanent feedback of its own state value. Below three neurons i = 1, 2, 3 
with values xi = ±1 have connectivity wij; any update has input xi and output yi: 

. 
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Update rule: 

 

 

The Hopfield network may be operated in a continuous mode or a discrete mode, 
depending on the used neuron model.  

In the application of the Hopfield network as a content-addressable memory, we 
know a priori the fixed points (attractors) of the network in that they correspond to 
the patterns to be stored. However, the synaptic weights of the network that produce 
the desired fixed points are unknown, and the problem is how to determine them. The 
primary function of a content-addressable memory is to retrieve a pattern (item) stored 
in memory in response to the presentation of an incomplete or noisy version of that 
pattern. 
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One way in which such properties may be used to implement a computational task is 
by way of the concept of energy minimization. Hopfield networks are an example 
of such an approach. Hopfield networks have an energy function which decreases 
or is unchanged with asynchronous updating. For a given state 𝑥𝑥 ∈ {−1, 1}𝑁𝑁 of the 
network and for any set of connection weights wij with wij = wji and wii = 0, let 

𝐸𝐸 =  −
1
2
� 𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

𝑁𝑁

𝑖𝑖,𝑗𝑗=1

 

Practical aspects 

• How many random patterns can we store in a Hopfield network with N nodes? 
In other words, given N, what is an upper bound for p, the number of stored 
patterns, such that the crosstalk term remains small enough with high 
probability? 

o A long and sophisticated analysis of the stochastic Hopfield network 
shows that if p/N > 0.138, small errors can pile up in updating and the 
memory becomes useless. 

• For small enough p, the stored patterns become attractors of the dynamical 
system given by the synchronous updating rule. However, we also have other, 
so-called spurious states. 

o If we start at a state close to any of these spurious attractors then we will 
converge to them. However, they will have a small basin of attraction. 
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5. Deep Neural Learning 
 
Formally speaking, Deep Learning allows computational models that are composed of 
multiple processing layers to learn representations of data with multiple levels of 
abstraction. These methods have dramatically improved the state-of-the-art in speech 
recognition, visual object recognition, object detection and many other domains such as 
drug discovery and genomics. Deep Learning discovers intricate structure in large data sets 
by using the backpropagation algorithm to indicate how a machine should change its internal 
parameters that are used to compute the representation in each layer from the 
representation in the previous layer. Deep convolutional nets have brought about 
breakthroughs in processing images, video, speech and audio, whereas recurrent nets 
have shone light on sequential data such as text and speech. 
 
Deep learning solves the central problem in representation learning by introducing 
representations that are expressed in terms of other, simpler representations. Deep learning 
enables the computer to build complex concepts out of simpler concepts. Figure 1 shows 
how a deep learning system can represent the concept of an image of a person by 
combining simpler concepts, such as corners and contours, which are in turn defined in 
terms of edges. 

 
 

Figure 1 A Deep Learning model for image recognition 
 
The quintessential example of a deep learning model is the feedforward deep network, or 
multilayer perceptron (MLP), that we already studied in the previous chapters. A multilayer 
perceptron is just a mathematical function mapping some set of input values to output 
values. The function is formed by composing many simpler functions. We can think of each 
application of a different mathematical function as providing a new representation of the 
input. The idea of learning the right representation for the data provides one perspective 
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on deep learning. Another perspective on deep learning is that depth enables learning a 
multistep computer program. 
 
Over the last few years Deep Learning was applied to hundreds of problems, ranging from 
computer vision to natural language processing. In many cases Deep Learning outperformed 
previous work. Deep Learning is heavily used in both academia to study intelligence and in 
the industry in building intelligent systems to assist humans in various tasks: 

• Computer vision and pattern recognition 
o Restore colors in B&W photos and videos 
o Pixel restoration  
o Real-time multi-person pose estimation 
o Describing photos 
o Changing gazes of people in photos 
o Real-time analysis of behaviors 
o Iterating photos to create new objects 
o Translation 

• Computer games, robots & self-driving cars 
o Winning Atari Breakout 
o Beating people in computer 

games 
o Self-driving cars 
o Robotics 

• Sound 
o Voice generation 
o Music composition 
o Restoring sound in videos 

• Art 
o Transferring style from 

famous paintings 
o Automatically writing 

Wikipedia articles, math 
papers, computer code and 
even Shakespeare 

o Handwriting 
• Computer hallucinations, predictions 

and other wild things 
o Predicting demographics and 

election results 
o Deep dreaming 
o AI invents and hacks its own crypto to avoid eavesdropping 
o Deep Learning networks creating Deep Learning networks 
o Predicting earthquakes 
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5.1 Fundamentals of Deep Networks 

Revisiting the definition of deep learning, the facets that differentiate deep learning 
networks in general from “canonical” feed-forward multilayer networks are as follows: 

• More neurons than previous networks 

• More complex ways of connecting layers 

• Explosion of computing power to train 

• Automatic feature extraction 

To further provide color to our definition of deep learning, here we define the four 
major architectures of deep networks: 

• Unsupervised Pre-trained Networks 

• Convolutional Neural Networks 

• Recurrent Neural Networks 

• Recursive Neural Networks 

Starting from a basic MLP model, a deep learning model assumes a high neuron 
count that has risen over the years to express more complex models. Layers also 
have evolved from each layer being fully connected in multilayer networks to 
locally connected patches of neurons between layers in Convolutional Neural 
Networks (CNNs) and recurrent connections to the same neuron in Recurrent Neural 
Networks (in addition to the connections from the previous layer). 

More connections means that the neural networks have more parameters to 
optimize, and this required the explosion in computing power that occurred over the 
past decades. All of these advances provided the foundation to build next-generation 
neural networks capable of extracting features for themselves in a more intelligent 
fashion. This allowed deep networks to model more complex problem spaces (e.g., 
image recognition advances) than previously possible, as we have seen in the 
multitude of previous examples. As industry demands are ever changing and ever 
reaching, the capabilities of neural networks have had to charge forward.  

 

5.2 Common Architectural Principles of Deep Networks 

Before we get into the specific architectures of the major deep networks, in the next 
section, we extend our understanding of the core components. First, we’ll reexamine 
the core components again as follows and extend their coverage for the purposes of 
understanding deep networks. 
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Parameters 

As we also learned in previous chapters, parameters relate to the x parameter vector 
in the equation Ax = b in basic machine learning. Parameters in neural networks relate 
directly to the weights on the connections in the network. We take the dot product 
of the matrix A, and the parameter vector x to get our current output column vector b. 
The closer our outcome vector b is to the actual values in the training data, the better 
our model is. We use methods of optimization such as gradient descent to find 
good values for the parameter vector to minimize loss across our training dataset. 

In deep networks, we still have a parameter vector representing the connection in 
the network model we’re trying to optimize. The biggest change in deep networks 
with respect to parameters is how the layers are connected in the different 
architectures. 

Layers 

Layers are a fundamental architectural unit in deep networks. One can customize 
a layer by changing the type of activation function it uses (or subnetwork type). 
Moreover, one can use combinations of layers to achieve a goal (e.g., classification 
or regression). Finally, it is important to note that each type of layer requires different 
hyperparameters (specific to the architecture) to get a deep network to learn initially. 
Further hyperparameter tuning can then be beneficial through reducing overfitting. 

Activation Functions 

In deep network activation functions are used in specific architectures to drive 
feature extraction. The higher-order features learnt from the data in deep networks 
are a nonlinear transform applied to the output of the previous layer. This allows the 
network to learn patterns in the data within a constrained space. 

Depending on the activation function one picks, one will find that some objective 
functions are more appropriate for different kinds of data (e.g., dense versus sparse).  

Hidden layers are concerned with extracting progressively higher-order features from 
the raw data. Commonly used functions include: Sigmoid, Tanh, Hard tanh, Rectified 
Linear Unit (ReLU) (and its variants). 

Output layers for regression are motivated by what type of answer we expect our 
model to output. If we want to output a single real-valued number from our model, we’ll 
want to use a linear activation function. 

Output layer for binary classification need a sigmoid output layer with a single 
neuron to return a real value in the range of 0.0 to 1.0 (excluding those values) for the 
single class. This real-valued output is typically interpreted as a probability 
distribution. 
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Output layer for multiclass classification one cares about the best score across 
these classes. It typically uses a softmax output layer with an argmax function to get 
the highest score of all the classes. The softmax output layer computes a probability 
distribution over all the classes. 

Loss Functions 

Loss functions quantify the agreement between the predicted output (or label) and 
the ground truth output. We use loss functions to determine the penalty for an 
incorrect classification of an input vector. Typically, when designing deep neural 
nets one can use one of the following loss functions: Squared loss, Logistic loss, 
Hinge loss, Negative log likelihood. 

Optimization Algorithms 

Training a model in deep learning involves finding the best set of values for the 
parameter vector of the model. One can think of deep learning as an optimization 
problem in which one minimizes the loss function with respect to the parameters 
of our prediction function (based on the model). 

First-order optimization algorithms calculate the Jacobian matrix. The Jacobian 
has one partial derivative per parameter (to calculate partial derivatives, all other 
variables are momentarily treated as constants). The algorithm then takes one step in 
the direction specified by the Jacobian. Second-order algorithms calculate the 
derivative of the Jacobian (i.e., the derivative of a matrix of derivatives) by 
approximating the Hessian. Second-order methods take into account 
interdependencies between parameters when choosing how much to modify each 
parameter. 

Gradient descent is a member of this path-finding class of algorithms. Variations 
of gradient descent exist, but at its core, it finds the next step in the right direction 
with respect to an objective at each iteration. Those steps move us toward a global 
minimum error or maximum likelihood. 

Stochastic gradient descent (SGD) is machine learning’s workhorse optimization 
algorithm. SGD trains several orders of magnitude faster than methods such as 
batch gradient decent, with no loss of model accuracy. The strengths of SGD are 
easy implementation and the quick processing of large datasets. You can adjust 
SGD by adapting the learning rate (e.g., Adagrad) or using second-order 
information (i.e., the Hessian). SGD is also a popular algorithm for training neural 
networks due to its robustness in the face of noisy updates, building models that 
generalize well. 

Hyperparameters 

A hyperparameter is any configuration setting of a deep net that is free to be 
chosen by the user that might affect performance.  
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Here we have parameters such as:  

• Layer size 
o The number of neurons in a given layer. For the input layer, this will 

match up to the number of features in the input vector. For the output 
layer, this will either be a single output neuron or a number of neurons 
matching the number of classes we are trying to predict. 

• Magnitude (momentum, learning rate) 
o Hyperparameters in the magnitude group involve the gradient, step size, 

and momentum. The learning rate in machine learning is how fast we 
change the parameter vector as we move through search space. If the 
learning rate becomes too high, we can move toward our goal faster but 
we might also take a step so large that we shoot right past the best 
answer to the problem, as well. 

o Momentum is a factor between 0.0 and 1.0 that is applied to the 
change rate of the weights over time. Typically, we see the value for 
momentum between 0.9 and 0.99. 

• Regularization 
o Regularization is a measure taken against overfitting. Overfitting 

occurs when a model describes the training set but cannot generalize 
well over new inputs. Overfitted models have no predictive capacity for 
data that they haven’t seen. 

o Regularization for hyperparameters helps modify the gradient so that it 
doesn’t step in directions that lead it to overfit. 

• Activations (and activation function families) 
• Weight initialization strategy 
• Loss functions 
• Settings for epochs during training (mini-batch size) 

o With mini-batching we send more than one input vector (a group or 
batch of vectors) to be trained in the learning system. This allows us to 
use hardware and resources more efficiently at the computer-
architecture level. 

• Normalization scheme for input data  

5.3 Deep Networks Building Blocks 

Next, we’ll take the concepts in the previous section (i.e. Parameters, Layers Activation 
functions, Loss functions, Optimization methods, Hyper-parameters) and build on 
them to better understand the building block networks of deep networks. 
 
Inspired by networks of biological neurons, feed-forward networks are the simplest 
artificial neural networks. They are composed of an input layer, one or many hidden 
layers, and an output layer. In this section, we introduce networks that are 
considered building blocks of larger deep networks, such as Restricted Boltzmann 
Machines (RBMs) and Autoencoders.  
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Both RBMs and autoencoders are characterized by an extra layer-wise step for 
training. They are often used for the pretraining phase in other larger deep networks. 

RBM 
 

RBMs model probability and are great at feature extraction. They are feed-forward 
networks in which data is fed through them in one direction with two biases rather 
than one bias as in traditional backpropagation feed-forward networks. RBMs are used 
in deep learning for feature extraction and dimensionality reduction. 

“Restricted Boltzmann Machines” are networks in which connections between 
nodes of the same layer are prohibited (e.g., there are no visible-visible or hidden-
hidden connections along which signal passes). 

 

Figure 2 The Restricted Boltzmann Machine model 

A standard RBM has a visible layer and a hidden layer, as shown in Figure 2. We can 
also see a graph of weights (connections) between the hidden and visible units in the 
figure. Think of these weights in the same way you think of weights in the classical 
neural network sense. With RBMs, every visible unit is connected to every hidden unit, 
yet no units from the same layer are connected. Each layer of an RBM can be 
imagined as a row of nodes. The nodes of the visible and hidden layers are connected 
by connections with associated weights. 

The technique known as pretraining using RBMs means teaching it to reconstruct 
the original data from a limited sample of that data. That is, given a chin, a trained 
network could approximate (or “reconstruct”) a face. RBMs learn to reconstruct the 
input dataset. 

RBMs calculate gradients by using an algorithm called contrastive divergence. 
Contrastive divergence (CD) is the name of the algorithm used in sampling for the 
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layer-wise pretraining of a RBM. Also called CD-k, contrastive divergence minimizes 
the Kullback-Leibler (KL) divergence (the delta between the real distribution of 
the data and the guess) by sampling k steps of a Markov chain to compute a guess. 

 

Autoencoders 

Autoencoders are a variant of feed-forward neural networks that have an extra 
bias for calculating the error of reconstructing the original input. After training, 
autoencoders are then used as a normal feed-forward neural network for 
activations. This is an unsupervised form of feature extraction because the neural 
network uses only the original input for learning weights rather than backpropagation, 
which has labels. 

We use autoencoders to learn compressed representations of datasets. Typically, 
we use them to reduce a dataset’s dimensionality. The output of the autoencoder 
network is a reconstruction of the input data in the most efficient form. 

Autoencoders share a strong resemblance with multilayer perceptron neural 
networks in that they have an input layer, hidden layers of neurons, and then an 
output layer. The key difference to note between a multilayer perceptron network 
diagram (from earlier chapters) and an autoencoder diagram is the output layer in an 
autoencoder has the same number of units as the input layer does, as depicted in 
Figure 3. 

 

Figure 3 The Autoencoder model 
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Building a model to represent the input dataset might not sound useful on the surface. 
However, we’re less interested in the output itself and more interested in the 
difference between the input and output representations. If we can train a neural 
network to learn data it commonly “sees,” then this network can also let us know when 
it’s “seeing” data that is unusual, or anomalous. 

 

5.4 Major Deep Networks Architectures 
 
From the class of Unsupervised Pretrained Networks we will analyze Deep Belief 
Networks (DBNs) and Generative Adversarial Networks (GANs). 
 
Deep Belief Networks 
 
DBNs are composed of layers of Restricted Boltzmann Machines (RBMs) for the 
pretrain phase and then a feed-forward network for the fine-tune phase. Figure 4 
shows the network architecture of a DBN. 
 

 

Figure 4 The DBN model 

Such a model uses RBMs to extract higher-level features from the raw input 
vectors. To do that, we want to set the hidden unit states and weights such that when 
we show the RBM an input record and ask the RBM to reconstruct the record the 
record, it generates something close to the original input vector. 

The fundamental purpose of RBMs in the context of deep learning and DBNs is to 
learn these higher-level features of a dataset in an unsupervised training fashion. 
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Generative Adversarial Networks 

GANs have been shown to be quite adept at synthesizing novel images based on 
other training images. GANs are an example of a network that uses unsupervised 
learning to train two models in parallel.  

A key aspect of GANs (and generative models in general) is how they use a 
parameter count that is significantly smaller than normal with respect to the amount 
of data on which we’re training the network. The network is forced to efficiently 
represent the training data, making it more effective at generating data similar to the 
training data. A GAN is composed of a/some discriminator network(s) and a 
generative network.  

The discriminator networks take images as input, and then output a classification. 
The gradient of the output of the discriminator network with respect to the synthetic 
input data indicates how to make small changes to the synthetic data to make it more 
realistic. The generative network in GANs generates data (or images) with a special 
kind of layer called a deconvolutional layer. During training, we use 
backpropagation to update the generating network’s parameters to generate more 
realistic output images. The goal here is to update the generating network’s 
parameters to the point at which the discriminating network is sufficiently “fooled” by 
the generating network because the output is so realistic as compared to the training 
data’s real images. 

Next we will analyze Convolutional Neural Networks (CNN). 

The goal of a CNN is to learn higher-order features in the data via convolutions. 
They are well suited to object recognition with images and consistently top image 
classification competitions. They can identify faces, individuals, street signs, 
platypuses, and many other aspects of visual data.  

CNNs overlap with text analysis via optical character recognition, but they are also 
useful when analyzing words as discrete textual units. They’re also good at 
analyzing sound. 

The efficacy of CNNs in image recognition is one of the main reasons why the world 
recognizes the power of deep learning. As Figure 5 illustrates, CNNs are good at 
building position and rotation invariant features from raw image data. 

CNNs tend to be most useful when there is some structure in the input data. An 
example would be how images and audio data that have a specific set of repeating 
patterns and input values next to each other are related spatially. Conversely, the 
columnar data exported from a relational database management system (RDBMS) 
tends to have no structural relationships spatially. Columns next to one another just 
happen to be materialized that way in the database exported materialized view. 
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Figure 5 The CNN model for image recognition 

CNNs transform the input data from the input layer through all connected layers into a 
set of class scores given by the output layer. There are many variations of the CNN 
architecture, but they are based on the pattern of layers, as demonstrated in Figure 6. 

 

Figure 6 Generic CNN model 

In the following paragraphs we look at the individual layers in the CNN architecture 
and emphasize the core principles of operation and the impact each layer has in the 
overall processing capabilities of the network. 
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Input Layers 

Input layers are where we load and store the raw input data of the image for processing 
in the network. This input data specifies the width, height, and number of channels. 
Typically, the number of channels is three, for the RGB values for each pixel. 

Convolutional Layers 

Convolutional layers are considered the core building blocks of CNN architectures. 
The layer will compute a dot product between the region of the neurons in the input 
layer and the weights to which they are locally connected in the output layer. The 
resulting output generally has the same spatial dimensions (or smaller spatial 
dimensions) but sometimes increases the number of elements in the third dimension 
of the output (depth dimension). 

A convolution is defined as a mathematical operation describing a rule for how to 
merge two sets of information. It is important in both physics and mathematics and 
defines a bridge between the space/time domain and the frequency domain through 
the use of Fourier transforms. It takes input, applies a convolution kernel, and gives 
us a feature map as output. 

 

Figure 7 The convolution operation in CNNs 

The convolution operation, shown in Figure 7, is known as the feature detector of 
a CNN. The input to a convolution can be raw data or a feature map output from 
another convolution. It is often interpreted as a filter in which the kernel filters input 
data for certain kinds of information; for example, an edge kernel lets pass through 
only information from the edge of an image. 

Pooling Layers 

Pooling layers are commonly inserted between successive convolutional layers. We 
want to follow convolutional layers with pooling layers to progressively reduce the 
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spatial size (width and height) of the data representation. Pooling layers reduce the 
data representation progressively over the network and help control overfitting. The 
pooling layer operates independently on every depth slice of the input. 

Fully Connected Layers 

We use this layer to compute class scores that we’ll use as output of the network 
(e.g., the output layer at the end of the network). Fully connected layers have the 
normal parameters for the layer and hyperparameters. Fully connected layers perform 
transformations on the input data volume that are a function of the activations in the 
input volume and the parameters (weights and biases of the neurons). 

In the next section we will look at Recurrent Neural Networks. 

Recurrent Neural Networks are in the family of feed-forward neural networks. They 
are different from other feed-forward networks in their ability to send information 
over time-steps. Recurrent Neural Networks take each vector from a sequence of 
input vectors and model them one at a time. This allows the network to retain state 
while modeling each input vector across the window of input vectors. Modeling the 
time dimension is a hallmark of Recurrent Neural Networks. 

Recurrent Neural Networks are a superset of feed-forward neural networks but 
they add the concept of recurrent connections. These connections (or recurrent 
edges) span adjacent time-steps (e.g., a previous time-step), giving the model the 
concept of time. The conventional connections do not contain cycles in recurrent 
neural networks. However, recurrent connections can form cycles including 
connections back to the original neurons themselves at future time-steps. 

LSTM Networks 

Long Short-Term Memory (LSTM) networks are the most commonly used variation 
of Recurrent Neural Networks. LSTM networks were introduced in 1997 by Hochreiter 
and Schmidhuber.  

The critical component of the LSTM is the memory cell and the gates (including 
the forget gate, but also the input gate). The contents of the memory cell are 
modulated by the input gates and forget gates. Assuming that both of these gates 
are closed, the contents of the memory cell will remain unmodified between one time-
step and the next. The gating structure allows information to be retained across 
many time-steps, and consequently also allows gradients to flow across many time-
steps. This allows the LSTM model to overcome the vanishing gradient (i.e, 
gradients become too large or too small and make it difficult to model long-range 
dependencies in the structure of the input dataset) problem that occurs with most 
Recurrent Neural Network models. 

The generic architecture of a LSTM block is depicted in Figure 8.  



Page | 17  
 

 

Figure 8 Generic architecture of LSTM block 

LSTM layers 

A basic layer accepts an input vector x (non-fixed) and gives output y. The output y 
is influenced by the input x and the history of all inputs. The layer is influenced by the 
history of inputs through the recurrent connections. The RNN has some internal 
state that is updated every time we input a vector to the layer. The state consists of a 
single hidden vector. 

Training LSTM 

LSTM networks use supervised learning to update the weights in the network. They 
train on one input vector at a time in a sequence of vectors. Vectors are real-valued 
and become sequences of activations of the input nodes. Every non-input unit 
computes its current activation at any given time-step. This activation value is 
computed as the nonlinear function of the weighted sum of the activations of all 
units from which it receives connections. For each input vector in the sequence of 
input, the error is equal to the sum of the deviations of all target signals from 
corresponding activations computed by the network. 

Backpropagation through time (BPTT) 

Recurrent Neural Network training can be computationally expensive. The traditional 
option is to use BPTT. BPTT is fundamentally the same as standard backpropagation: 
we apply the chain rule to work out the derivatives (gradients) based on the connection 
structure of the network. It’s through time in the sense that some of those 
gradients/error signals will also flow backward from future time-steps to current time-
steps, not just from the layer above (as occurs in standard backpropagation). 
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RNNs and CNNs are usually used together to exploit both the structure in the data 
and the temporal component in tasks such as labelling objects in images, as shown in 
Figure 9.  

 

Figure 9 Labeling images with a blended CNN/Recurrent Neural Network 

We conclude our analysis of deep neural processing architectures with the analysis of 
Recursive Neural Networks.  

Recursive Neural Networks, like Recurrent Neural Networks, can deal with variable 
length input. The primary difference is that Recurrent Neural Networks have the 
ability to model the hierarchical structures in the training dataset. Images 
commonly have a scene composed of many objects. Deconstructing scenes is often 
a problem domain of interest yet is nontrivial. The recursive nature of this 
deconstruction challenges us to not only identify the objects in the scene, but also 
how the objects relate to form the scene. 

A Recursive Neural Network architecture is composed of a shared-weight matrix 
and a binary tree structure that allows the recursive network to learn varying 
sequences of words or parts of an image. It is useful as a sentence and scene parser. 
Recursive Neural Networks use a variation of backpropagation called 
backpropagation through structure (BPTS). The feed-forward pass happens 
bottom-up, and backpropagation is top-down. Think of the objective as the top of 
the tree, whereas the inputs are the bottom. 

Both Recursive and Recurrent Neural Networks share many of the same use cases. 
Recurrent Neural Networks are traditionally used in Natural Language Processing 
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NLP because of their ties to binary trees, contexts, and natural-language-based 
parsers. In the case of Recursive Neural Networks, it is a constraint that we use a 
parser that builds the tree structure (typically constituency parsing). Recursive 
Neural Networks can recover both granular structure and higher-level 
hierarchical structure in datasets such as images or sentences. 

When to use deep learning? 

You should use deep learning when... 

• Simpler models (logistic regression) don’t achieve the accuracy level your use 
case needs 

• You have complex pattern matching in images, NLP, or audio to deal with 
• You have high dimensionality data 
• You have the dimension of time in your vectors (sequences) 

When to stick with traditional machine learning? 

You should use a traditional machine learning model when... 

• You have high-quality, low-dimensional data; for example, columnar data from 
a database export 

• You’re not trying to find complex patterns in image data 

In summary, deep learning is an approach to machine learning that has drawn 
heavily on our knowledge of the human brain, statistics and applied math as it 
developed over the past several decades. In recent years, deep learning has seen 
tremendous growth in its popularity and usefulness, largely as the result of more 
powerful computers, larger datasets and techniques to train deeper networks. 
The years ahead are full of challenges and opportunities to improve deep learning 
even further and to bring it to new frontiers. 
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6. Technical implementations of neural computation  

6.1. Recurrent networks 

The human brain is wired not only to recognize individual instances but to also to 
analyze entire sequences of inputs. These sequences are rich in information, have 
complex time dependencies, and can be of arbitrary length. For example, vision, 
motor control, speech, and comprehension require high-dimensional processing of 
their inputs, as they change over time. This is something that feed-forward networks 
are poor at modeling. 

 

One promising solution to tackling the problem of learning sequences of information 
is the recurrent neural network (RNN). Such networks are built on the same 
computational unit as the feed forward neural networks, but differ in the architecture 
of how these neurons are connected to one another. Feed forward neural networks 
were organized in layers, where information flowed unidirectionally from input units 
to output units. There were no undirected cycles in the connectivity patterns. Neurons 
in the brain do contain undirected cycles as well as connections within layers and 
similarly, in order to create more powerful computational systems such as those 
modeled by RNNs. The generic processing scheme behind a RNN is depicted in the 
following figure. 

A RNN can learn many behaviors / sequence processing tasks that are not 
learnable by traditional machine learning methods. This supported the use of RNNs 
for technical applications: general computers which can learn algorithms to map input 
sequences to output sequences, with or without a teacher. They are computationally 
more powerful and biologically more plausible than other adaptive approaches 
such as Hidden Markov Models (no continuous internal states), feed-forward networks 
or Support Vector Machines (no internal states at all). 

Training a RNN - Backpropagation through time 
How do we train a RNN to achieve such a behavior? Specifically, how do we determine 
the connection weights? And how do we choose the initial activities of all of the hidden 
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units? An initial idea might be to use backpropagation directly, due to its successful 
use in feed forward neural networks.  

The problem with using backpropagation in RNNs is that there are cyclical 
dependencies. In feed-forward networks, when we calculate the error derivatives with 
respect to the weights in one layer, we could express them completely in terms of the 
error derivatives from the layer above. In a recurrent neural network, we don't have 
this layering because the neurons do not form a directed acyclic graph. Trying to 
backpropagate through a RNN could force us to try to express an error derivative in 
terms of itself, which is not analytically tractable. 
So how can we use backpropagation for RNNs, if at all? The answer lies in employing 
a transformation, where we convert our RNN into a new structure that's essentially a 
feed-forward neural network. This strategy is termed "unrolling" the RNN through 
time. 

The process is simple, but it has a profound impact on our ability to analyze the neural 
network. We take the RNN's inputs, outputs, and hidden units and replicate it for every 
time step. These replications correspond to layers in our new feed forward neural 
network. We then connect hidden units as follows. If the original RNN has a connection 
of weight ω from neuron i to neuron j, in our feed forward neural network, we draw a 
connection of weight ω from neuron i in every layer tk to neuron j in every layer tk+1. 

Thus, to train our RNN, we randomly initialize the weights, "unroll" it into a feed forward 
neural network, and backpropagate to determine the optimal weights. To determine 
the initializations for the hidden states at time t0, we can treat the initial activities as 
parameters fed into the feed forward network at the lowest layer and backpropagate 
to determine their optimal values as well. 
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We run into a problem however, which is that after every batch of training examples 
we use, we need to modify the weights based on the error derivatives we calculated. 
In our feed-forward network, we have sets of connections that all correspond to the 
same connection in the original RNN. The error derivatives calculated with respect to 
their weights, however, are not guaranteed to be equal, which means we might be 
modifying them by different amounts.  
We can get around this problem, by averaging (or summing) the error derivatives over 
all the connections that belong to the same set. This means that after each batch, we 
modify corresponding connections by the same amount, so if they were initialized to 
the same value, they will end up at the same value. 

Typical applications of RNNs 

RNNs have shown great success in many tasks, such as: language modeling and text 
generation, machine translation, speech recognition and image description 
generation. At the moment the most commonly used type of RNNs are Long Short-
Term Memory Networks (LSTMs). 

With respect to language modeling and text generation given a sequence of words 
we want to predict the probability of each word given the previous words. Language 
models allow us to measure how likely a sentence. Such a metric is important for 
machine translation (since high-probability sentences are typically correct). A side-
effect of being able to predict the next word is that we get a generative model, which 
allows us to generate new text by sampling from the output probabilities. In language 
modeling the input is typically a sequence of words (encoded as one-hot vectors for 
example), and our output is the sequence of predicted words, as shown in the 
following diagram where Whx, Whh, Why, are the input, hidden and output weights of the 
network. 
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Machine translation is similar to language modeling in that the input is a sequence 
of words in a source language (e.g. German). We want to output a sequence of words 
in a target language (e.g. English). A key difference is that our output only starts after 
the system has seen the complete input, because the first word of the translated 
sentences may require information captured from the complete input sequence, as 
shown in the figure.  

 

With respect to speech recognition, given an input sequence of acoustic signals from 
a sound wave, a RNN can predict a sequence of phonetic segments together with their 
probabilities. 

Finally, together with Convolutional Neural Networks (CNNs), RNNs have been 
used as part of a model to generate descriptions for unlabeled images. The 
combined model even aligns the generated words with features found in the images, 
as shown in the following figure. 

 

Another application where RNNs are successful is time-series prediction. Time 
series prediction problems are a difficult type of predictive modeling problem. Unlike 
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regression predictive modeling, time series also adds the complexity of sequence 
dependence among the input variables. 

 

6.2 Time-series prediction 

A time series is a sequence of data points with a natural temporal order, measured 
usually at uniform time intervals. Typical examples are financial markets (e.g. 
economic factors, financial indexes, exchange rate, spread), meteorology (e.g. 
weather variables, like temperature, pressure, and wind), biomedicine (e.g. 
physiological signals, heart-rate, patient temperature), web (e.g. clicks, logs) etc. 

 

The analysis of time-series brings a deep understanding of the data. First of all, time-
series analysis can realize: the prediction of the future based on the past, the control 
of the process producing the series, the understanding of the mechanism generating 
the series, and finally the description of the salient features of the series. 

Forecasting a time series is possible since future depends on the past or analogously 
because there is a relationship between the future and the past. However this relation 
is not deterministic and can hardly be explained in an analytical form.  

The selection of a proper model is extremely important as it reflects the underlying 
structure of the series and this fitted model in turn is used for future forecasting. A 
time series model is said to be linear or non-linear depending on whether the 
current value of the series is a linear or non-linear function of past observations. 

In general models for time series data can have many forms and represent different 
stochastic processes. There are two widely used linear time series models in literature, 
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namely the Autoregressive (AR) and Moving Average (MA) models. Combining 
these two, the Autoregressive Moving Average (ARMA) and Autoregressive 
Integrated Moving Average (ARIMA) models have been proposed in literature. The 
Autoregressive Fractionally Integrated Moving Average (ARFIMA) model 
generalizes ARMA and ARIMA models.  

An ARMA model is a combination of AR and MA models and is suitable for univariate 
time series modeling. In an AR model the future value of a variable is assumed to be 
a linear combination of p past observations and a random error together with a 
constant term. Mathematically the AR model can be expressed as: 

 𝑦𝑦𝑡𝑡 = 𝑐𝑐 +  �𝜙𝜙𝑖𝑖𝑦𝑦𝑖𝑖−1 + 𝜖𝜖𝑡𝑡

𝑝𝑝

𝑖𝑖=1

 

Here  𝑦𝑦𝑡𝑡 and 𝜖𝜖𝑡𝑡 are respectively the actual value and random error (or random shock) 
at time t, 𝜙𝜙𝑖𝑖 (i = 1,2,..., p) are model parameters and c is a constant. The integer 
constant p is the order of the model. 

Just as an AR model regress against past values of the series, an MA model uses 
past errors as the explanatory variables. The MA model is given by: 

𝑦𝑦𝑡𝑡 = 𝜇𝜇 +  �𝜃𝜃 𝑗𝑗𝜖𝜖𝑡𝑡−𝑗𝑗 + 𝜖𝜖𝑡𝑡

𝑞𝑞

𝑗𝑗=1

 

Here μ is the mean of the series, 𝜃𝜃 𝑗𝑗 (j = 1,2,...,q) are the model parameters and q is 
the order of the model. 

Autoregressive and moving average models can be effectively combined together to 
form a general and useful class of time series models, known as the ARMA models. 
Mathematically an ARMA model is represented as: 

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜖𝜖𝑡𝑡 + �𝜙𝜙𝑖𝑖𝑦𝑦𝑖𝑖−1

𝑝𝑝

𝑖𝑖=1

+ �𝜃𝜃 𝑗𝑗𝜖𝜖𝑡𝑡−𝑗𝑗

𝑞𝑞

𝑗𝑗=1

 

Here the model orders p, q refer to p autoregressive and q moving average terms. 

The ARMA models, described above can only be used for stationary time series data. 
However in practice many time series such as those related to socio-economic and 
business show non-stationary behavior. Time series, which contain trend and 
seasonal patterns, are also non-stationary in nature. Thus from application view point 
ARMA models are inadequate to properly describe non-stationary time series, which 
are frequently encountered in practice. For this reason the ARIMA model is proposed, 
which is a generalization of an ARMA model to include the case of non-stationarity as 
well. 
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Although linear models have drawn much attention due to their relative simplicity in 
understanding and implementation, many practical time series show non-linear 
patterns. Various nonlinear models have been suggested in literature: 
Autoregressive Conditional Heteroskedasticity (ARCH), Non-linear 
Autoregressive (NAR), and Nonlinear Moving Average (NMA). 

 

Why using RNNs for prediction? 

AR, MA and ARMA models are limited to prediction of linear system dynamics 
whereas RNNs can approximate nonlinear functions (i.e. Universal approximation 
theorem). Moreover, RNNs can be applied without an extensive analysis of underlying 
assumptions and are useful when knowledge is difficult to specify but there is an 
abundance of examples (non-parametric modeling). Hence, time series prediction is 
based on the inference of future behavior from examples of past behavior. 

Time-series prediction can be realized with various architectures of neural networks, 
both feedforward (FFNN) and recurrent (RNN). We provide a comparative view on 
how such neural processing architectures can tackle the forecasting problem. 

 

Providing an extension of the multilayer perceptron with context units simple RNN 
have a memory or sense of time. Such networks are useful for tasks that are 
dependent on a sequence of successive states. A RNN can predict the next item in a 
sequence from the current and preceding input and can be trained by back-
propagation, as previously shown. There are 2 types of simple RNNs, Jordan and 
Elman networks, which differ through their internal connectivity (see figure). 
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In the following section we analyze the basics of Backpropagation through time as 
applied to Nonlinear Auto Regressive with eXogenous inputs (NARX) models. 
Such models are used to implement RNNs in real world scenarios. NARX relates the 
current value of a time series to the past values of: the time series and the driving 
exogenous series, as shown in the following diagram: 

 

Applying Backpropagation through time to the NARX model we have. 

 



Page | 12  
 

 

 

For each pattern presentation: 

• Update the weights in each instance of f according to standard back-
propagation; 

• Assign to the weights the average of all weights across instances; 
• Compute Xt+1. 

Despite it provides a faster solution finding than general-purpose optimization 
techniques the method risks to fall in local optima or vanishing gradient. Finally, the 
computational power of such models was analyzed and described through two 
theorems and a corollary: 

• Theorem I (Siegelmann and Sontag, 1991) 
o All Turing machines may be simulated by fully connected RNN built on 

neurons with sigmoid activation function. 
• Theorem II (Siegelmann et al. 1997) 

o NARX network with one layer of hidden neurons with sigmoid activation 
function and a linear output neuron can simulate fully connected RNN 
with sigmoid activation function except for a linear slowdown. 

• Corollary (Giles, 1996) 
o NARX networks with one hidden layer of neurons and sigmoid activation 

function and a linear output neuron are Turing equivalent. 

In the next section we analyze some basic examples on applying such models for 
prediction.  
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Up to this point, we have studied about various stochastic and neural network methods 
for time series modeling and forecasting. Despite of their own strengths and 
weaknesses, these methods are quite successful in forecasting applications. 
Recently, a new statistical learning theory, the Support Vector Machine (SVM) has 
been receiving increasing attention for classification and forecasting. 

 

6.3. Support Vector Machines 

Initially SVMs were designed to solve pattern classification problems, such as 
optimal character recognition, face identification and text classification, etc. But soon 
they found wide applications in other domains, such as function approximation, 
regression estimation and time series prediction problems.  

The objective of SVM is to find a decision rule with good generalization ability through 
selecting some particular subset of training data, called support vectors. In this 
method, an optimal separating hyperplane is constructed, after nonlinearly 
mapping the input space into a higher dimensional feature space. Thus, the 
quality and complexity of SVM solution does not depend directly on the input space. 

The training process is equivalent to solving a linearly constrained quadratic 
programming problem. So, contrary to other networks’ training, the SVM solution is 
always unique and globally optimal. However a major disadvantage of SVM is that 
when the training size is large, it requires an enormous amount of computation 
which increases the time complexity of the solution. 
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The main idea of SVM when applied to binary classification problems is to find a 
canonical hyperplane which maximally separates the two given classes of training 
samples, as shown in the following diagram. 

 

For this classification problem, we can define a linear classifier for both a 2D and 3D 
input space. 

 

But, a question arises, which is the best (optimal) linear classifier? The solution is to 
select the most stable under perturbations of the inputs (i.e. the maximum margin 
solution), as shown in the next diagram depicting the margins and support vectors. 
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The margin maximization process assumes finding the hyperplanes separating the 
data which maximize a certain distance metric, as depicted in the next diagram. 

 

In the case there are outliers the problem is which is the best w with outliers? In this 
case we must make a tradeoff between the margin and the number of mistakes on the 
training data. The solution comes from calculating the soft margin as shown in the 
following diagram. 

 

In SVM applications it is convenient to map the points of the input space to a high 
dimensional feature space through some non-linear mapping and the optimal 
separating hyperplane is constructed in this new feature space. This method also 
resolves the problem where the training points are not separable by a linear 
decision boundary.  
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Because SVM uses an appropriate transformation the training data points can be 
made linearly separable in the feature space. The key idea is the kernel trick, briefly 
introduced in the following diagram. 

 

A common choice for kernels is the Gaussian radial basis function but functions like 
polynomial or hyperbolic tangent are also used. Usually, in order to find the best kernel 
search and optimization techniques are employed, such as grid search, random 
search or Bayesian optimization.  

The standard SVM formulation solves only binary classification problems, 
nevertheless combining several binary classifiers to construct a multi-class classifier 
is a usual technique. The typical multi-class classification models are One-versus-
all (winner-takes-all strategy) and One-versus-one (max-wins voting strategy) and 
have empirically good performance, a solution that is global and unique and a simple 
geometric interpretation. 

 

6.4. Liquid State Machines 

The Liquid State Machine (LSM) had been proposed as a computational model that 
is more adequate for modeling computations in cortical microcircuits than 
traditional models, such as Turing machines or attractor based models in 
dynamical systems (i.e. RNNs). In contrast to these other models, the LSM is a model 
for real-time computations on continuous streams of data, both inputs and outputs 
of a LSM are streams of data in continuous time.  

The basic idea of LSM is to use a high dimensional dynamical system and have 
the inputs continuously perturb it. If the dynamics are sufficiently complex, the LSM 
should act as a set of filters projecting the inputs into a higher dimensional space. 
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The LSM uses the internal dynamics of a recurrent spiking neural network to carry 
out computations on its input. The internal state serves as input for the so-called 
readout function. The liquid itself does not generate any output; it merely serves as 
a 'reservoir' for the inputs. The readout then looks at the liquid state (the response of 
the liquid to a certain input), and computes the output of the LSM. 

Given a time series of input, the LSM can produce a time series of behaviors as 
output. To get the desired behaviors, one will have to adjust the weights on the links 
between the core and the output. 

The LSM come as an alternative to RNNs (Maass 2001, Jaeger 2001), which are more 
difficult to train than feed-forward neural networks and infinitesimally small changes to 
RNN parameters can lead to drastic discontinuous changes in its behavior. Moreover, 
gradient descent RNN training methods might: have slow convergence 
(computationally expensive); involve a critical selection of learning parameters 
(vanishing gradient problem); or fall in local minima. 

LSMs are an approach to a more general class of models called, reservoir 
computing. This approach to computation is represented by two types of models, 
Echo state networks and Liquid state machines. The basic working principle is 
depicted in the following diagram. 

 

The recurrently connected nodes compute a large variety of nonlinear functions 
on the input. Given a large enough variety it is possible to obtain linear combinations 
(using the read out units) to perform arbitrary mathematical operations. 

Reservoir computing and LSMs greatly facilitates the practical application of RNNs, 
such that in many tasks reservoir computing networks outperform classical fully trained 
RNNs. 
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The underlying working principles of the LSM can be tracked back in neurobiological 
systems, namely looking at the cerebellum as a liquid state machine (Yamazaki and 
Tanaka 2005).  

 

 

In this model, the granular layer represents the passage of time by generating long 
sequences of active spiking populations (liquid state) whereas the Purkinje cells 
stop firing at the timing instructed by climbing fiber signals from the inferior olive 
(readout neurons – typically a trained FFNN). 

A LSM comprises three parts, an input layer, a large randomly interconnected 
unit which has the intermediate states transformed from input, and an output layer. 
As the name of the model hints, they use the microcircuit as a “liquid filter” that serves 
as an unbiased fading memory about current and preceding inputs to the circuit. 
Typically recurrent neural nets that employ Leaky Integrate and Fire Neurons (LIF) 
are used in these machines. The basic structure is depicted in the next diagram: 
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The liquid filter unit L serves like excitable medium core to pre-process the input u and 
transforms the input into liquid states x. Then the temporal features extracted are 
passed to the readout unit through a function f that maps the liquid state x at time t 
into the output. 

Given the previous sections and analysis we performed on various neurally inspired 
computational architectures, we can enumerate the reasons why LSMs are attractive 
and an active area of research. 

Advantages: 

• Efficient in comparison with classical trained RNNs. 
• Easier to learn dependencies requiring long-range memory. 
• The same network can perform multiple computations on different time-scales. 

Disadvantages: 

• LSMs don't actually explain how the brain functions. At best they can replicate 
some parts of brain functionality. 

• Inefficient from an implementation point of view in comparison with custom 
designed circuits. 
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7. Reinforcement Learning 
 
“If an action taken by a learning system is followed by a satisfactory state of affairs, 
then the tendency of the system to produce that particular action is strengthened or 
reinforced. Otherwise, the tendency of the system to produce that action is weakened”. 
This generic definition was given in 1991 by R. Sutton, the inventor of Reinforcement 
Learning (RL), to root such a novel learning mechanism in the framework of the 
already formalized adaptive optimal control. 
 
Many non-linear control problems today cannot get solved by computers; not because 
of memory and CPU-time, but because the system designer does not know how to 
program “the correct things”, for example: inverted pendulum uprising, pole balancing, 
airplane stabilization and even board games.   
 
RL has been seen as a derivative of supervised learning based on trial-and-error 
(and reward). In contrast to supervised learning, there is no direct teacher to provide 
how much output error a particular action has produced. Instead, the output has been 
quantified into either ‘positive’ or ‘negative’ reward corresponding to closer to or 
further from the goal.  
 
7.1 Introduction to Reinforcement Learning  
 
In the basic formulation RL models allow an agent to actively choose a decision policy 
based on explorations of the environment.  
 

 
http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node28.html 

 
The main elements of a RL model are: 

1. the Environment 
2. the Reward 
3. the Policy 
4. the Value function 

In brief, the policy shows how to choose a good action for a given state, the value 
function shows how good / valuable a state is, whereas the reward shows how much 
reward does being in a certain state bring. The RL searches a mapping from state 
to action by trial-and-error. 
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1. Environment 

The environment must be observable through the sensory readings and actions 
must have an impact on the environment through the motor commands. In 
defining the environment some assumptions are made. The environment must be: 
perfectly observable (i.e. all states that potentially have an impact on the choice 
of actions can be observed); deterministic (i.e. same actions taken in same state 
lead to same results in repeated trials). These constraints are relaxed in more 
advanced algorithms, but for the current introduction we will consider them. 

2. Reward 

The reward r(s), or the reinforcement signal, depicts a mapping from state to 
action and is justified by the environment giving reward to the learning system in 
obvious situations (i.e. after running a board game or when the plane crashes). 
The RL agent tries to maximize all expected future reward. It is the job of the 
system designer to define a reward function correctly. There are at least three 
types of rewards: 

• Pure delayed reward 
o All reward is zero until the final state is reached and the sign of the 

final reward indicates the success or failure. 
o Examples: 

 Playing backgammon 
• States: configuration of pieces (high-dimensional state 

space); 
• Reward: a final “win” gives a reward of +1 whereas a 

final “loss” gives a reward of -1; there is no reward for 
intermediate actions. 

  

 Cart balancing 
• RL should keep the pole upright by moving the cart left 

or right; 
• Reward: final rewards -1 if pole falls or cart touches 

left/right borders and 0 otherwise. 
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• Minimum time to goal reward 
o Example: 

 Get a car uphill 
• The car’s engine is too weak to get the car up by itself. 

The RL system needs to find the concept of 
“momentum” to get up to the goal and minimize the time 
spent in the valley; 

• State space: position of the car, velocity of the car; 
• Action space: drive forward, drive backward, empty 

gear; 
• Reward: continuously -1 at every time step and 0 once 

the car reached the Goal. 

 

• Multi-player games 
o Two or more agents work simultaneously to achieve potentially 

opposing goals: 
 Predator and prey scenario: 

• One robot is chasing another robot; so one agent tries 
to minimize the distance between the two, the other 
robot tries to maximize the distance; 
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• The predator has to select actions that provide the best 
reward given the unknown actions of the prey so that it 
is learning to maximize reward in a “worst case 
scenario”. 

3. Policy 

The policy π(s) is responsible to map from state to action to be taken. This is what 
needs to be learned: how to choose a good action for a given state. 

4. Value function 

The value function, V(s), shows how valuable a state is. The value of a state is 
defined as the sum of the expected future rewards when starting from a state 
s following a policy π(s). An important observation is that, the value function can 
be represented as a neural network, an equation or as a look-up table. 

There are two models for value functions: 

• Finite horizon model 

𝑉𝑉(𝑠𝑠) =  ∑ 𝑟𝑟�𝑠𝑠(𝑡𝑡)�,𝑛𝑛
𝑡𝑡=1   where 𝑠𝑠(𝑡𝑡 + 1) = 𝜋𝜋(𝑠𝑠(𝑡𝑡)) 

• Infinite horizon model 

𝑉𝑉(𝑠𝑠) =  ∑ 𝛾𝛾𝑡𝑡𝑟𝑟�𝑠𝑠(𝑡𝑡)�,∞
𝑡𝑡=0   where 𝑠𝑠(𝑡𝑡 + 1) = 𝜋𝜋�𝑠𝑠(𝑡𝑡)�, 𝛾𝛾𝑡𝑡 ∈ ]0,1] 

A good example is the Markov Decision Processes (MDP). MDPs assume that 
the complete state of the world is visible to the agent. This is clearly highly 
unrealistic (think of a robot in a room with enclosing walls: it cannot see the state 
of the world outside of the room). POMDPs (Partially Observable MDPs) model the 
information available to the agent by specifying a function from the hidden state to 
the observables, just as in an HMM. The goal now is to find a mapping from 
observations (not states) to actions. 

How to find an algorithm that finds the best possible value function? Going from v(s) 
to find π(s) is simple, we could, for example, use simple hill-climbing and chose the 
action which maximizes v(s+1). 

In many real-world cases, agents must deal with environments that contain non-
determinism. Perhaps the agent’s actions can fail, or its sensors can be 
inaccurate, or outside forces might change the environment. Deterministic 
environments are nice, because they let us apply search algorithms such as A* to find 
an optimal sequence of actions. However, many environments are not deterministic. 

As we previously remarked MDPs are a way to model sequential decision making 
under uncertainty. In this framework one can formulate the total reward from a policy 
as the sum of the discounted expected utility of each state visited by that policy. 
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The optimal policy is the policy that maximizes this equation. In this assignment, we 
will look at three algorithms for discovering this policy. Several methods have been 
developed to tackle this problem. 

Value iteration 

The essential idea behind value iteration is that if we knew the true value of each state, 
our decision would be simple: always choose the action that maximizes expected 
utility. But we don’t initially know a state’s true value; we only know its immediate 
reward. But, for example, a state might have low initial reward but be on the path to a 
high-reward state. 

Assuming we have a look-up table of values v(s) and we sweep through the table to 
update vt: 

𝑉𝑉′𝑡𝑡 = max
𝜋𝜋(𝑠𝑠)

(𝑟𝑟(𝑠𝑠𝑡𝑡+1) + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡+1)) 

or “incrementally” 

Δ𝑉𝑉′𝑡𝑡 = 𝜂𝜂(max
𝜋𝜋(𝑠𝑠)

�𝑟𝑟(𝑠𝑠𝑡𝑡+1) + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡+1)� −  𝑉𝑉(𝑠𝑠𝑡𝑡)) 

The value iteration algorithm is guaranteed to find the best control policy for any system 
by taking long term reward into account, though r(s). But the system designer needs to know 
the results of all actions (i.e. through max

𝜋𝜋(𝑠𝑠)
) in a given state and it needs very long time to 

converge. 
 
The pseudo-code for the value iteration algorithm: 

 Initialize V(s) = rand() for all s ∋ target 
 Initialize V(s) = target value for all s ∈ target 
 Repeat 
 Δ = 0 
 for all s ∈ S in random order 
 𝑣𝑣 − 𝑉𝑉(𝑠𝑠) 
 V(s) = max

𝜋𝜋(𝑠𝑠)
�𝑟𝑟(𝑠𝑠𝑡𝑡+1) + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡+1)� 

 Δ = max (Δ, |𝑣𝑣 − 𝑉𝑉(𝑠𝑠)|) 
 end 

 until Δ == 0 𝑜𝑜𝑟𝑟 Δ ≤ 0 
 
Continuous states, Residual Gradient Algorithm 
 
A RL algorithm can be guaranteed to converge for lookup tables, yet unstable for function-
approximation systems that have even a small amount of generalization. Direct algorithms 
can be fast but unstable, and residual gradient algorithms can be stable but slow. Direct 
algorithms attempt to make each state match its successors, but ignore the effects of 
generalization during learning. Residual gradient algorithms take into account the effects 
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of generalization, but attempt to make each state match both its successors and its 
predecessors. 
 
Considering that the value function can be calculated as  
 

𝑉𝑉(𝑠𝑠) = 𝑉𝑉∗(𝑠𝑠) + 𝑒𝑒(𝑠𝑠) 
 
where 𝑉𝑉∗(𝑠𝑠) is the unknown “perfect” value of state s and e(s) the error, instead of a 
look-up table V(s) we can use a function approximator to compute V(s). Neural 
networks, as universal function approximators, are a good candidate for such a 
task. We can rewrite the previous equation as a function approximation problem 
given the current set of weights wt  with  
 

𝑉𝑉∗(𝑠𝑠𝑡𝑡) = 𝑉𝑉(𝑠𝑠𝑡𝑡,𝑤𝑤𝑡𝑡) =  𝑁𝑁𝑒𝑒𝑁𝑁𝑟𝑟𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑡𝑡(𝑠𝑠𝑡𝑡,𝑤𝑤𝑡𝑡) 
 
and the change in weights  
 

Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂(max
𝜋𝜋(𝑠𝑠)

�𝑟𝑟(𝑠𝑠𝑡𝑡+1) + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡+1)� −  𝑉𝑉(𝑠𝑠𝑡𝑡))
𝜕𝜕𝑉𝑉(𝑠𝑠𝑡𝑡,𝑤𝑤𝑡𝑡)

𝜕𝜕𝑤𝑤𝑡𝑡
 

 
where  

Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂(max
𝜋𝜋(𝑠𝑠)

�𝑟𝑟(𝑠𝑠𝑡𝑡+1) + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡+1)� −  𝑉𝑉(𝑠𝑠𝑡𝑡))�������������������������
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 𝑎𝑎𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡 𝑉𝑉

𝜕𝜕𝑉𝑉(𝑠𝑠𝑡𝑡,𝑤𝑤𝑡𝑡)
𝜕𝜕𝑤𝑤𝑡𝑡�������

𝑡𝑡ℎ𝑝𝑝 𝑝𝑝ℎ𝑎𝑎𝑛𝑛𝑎𝑎𝑝𝑝 𝑝𝑝𝑓𝑓 𝑉𝑉 𝑤𝑤.𝑝𝑝.𝑡𝑡.𝑡𝑡ℎ𝑝𝑝 𝑤𝑤𝑝𝑝𝑤𝑤𝑎𝑎ℎ𝑡𝑡𝑠𝑠 (𝑠𝑠𝑝𝑝𝑝𝑝 𝑏𝑏𝑎𝑎𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

 

 
This allows “interpolating” between states and starting using the RL even when not 
all states have been explored. In this formulation the learning rate 𝜼𝜼 has to be very 
small otherwise oscillations might occur because we are updating the weights at 
time t, but once the update has occurred, the “error” has changed because it depends 
on w. A solution would be to use a different error measure of doing small changes 
only. 
 
Value iteration works fine, but it has two weaknesses: first, it can take a long time 
to converge in some situations, even when the underlying policy is not changing, and 
second, it’s not actually doing what we really need. We actually don’t care what the 
value of each state is; that’s just a tool to help us find the optimal policy.  
So why not just find that policy directly? We can do so by modifying value iteration 
to iterate over policies. We start with a random policy, compute each state’s utility 
given that policy, and then select a new optimal policy. This technique is called policy 
iteration. 
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7.2 Q-Learning 
 
Value Iteration and Policy Iteration work well for determining an optimal policy, but 
they assume that the agent has a great deal of domain knowledge. Specifically, 
they assume that the agent accurately knows the transition function and the 
reward for all states in the environment. This is considerable amount information to 
which, in many cases, an agent may not have access to. 
 
In order to handle such cases there is a way to learn this information. In essence, there 
is a trade-off between learning time for a priori knowledge. One way to do this is 
using Q-learning. This RL model is a form of model-free learning, meaning that an 
agent does not need to have any model of the environment; it only needs to know 
what states exist and what actions are possible in each state. 
 
The core idea is to map the tuple (state, action) to reward. We define a function 
Q(s,a) as the reward for a given action in a state plus all future rewards along the 
optimal actions: 
 

𝑄𝑄(𝑠𝑠, 𝑁𝑁) = 𝑟𝑟(𝑠𝑠,𝑁𝑁) + 𝛾𝛾max𝑄𝑄(𝑠𝑠′,𝑁𝑁) 
 
This formulation allows the agent to “perform” only states st and st+1, not a large 
number of st+1. 
We introduce the basic algorithm by looking at a simple example, Search and rescue 
robot planning. Suppose the robot operates in an environment with 5 rooms connected 
with certain doors, as shown in the following figure. The task for the robot, if placed 
initially in any room, is to find the best way to reach outside world (F) from that room 
without knowing the pattern? 
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An extension to Q-Learning for a continuous state space has also been developed. In 
this case we use a neural network for Q(s,a) and the change in Q is given by 
 

Δ𝑄𝑄(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) = �𝑟𝑟(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) + 𝛾𝛾max𝑄𝑄(𝑠𝑠′,𝑁𝑁)� −  𝑄𝑄(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡)) 
 
and the change in weights 
 

Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂Δ𝑄𝑄(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡)
𝜕𝜕𝑄𝑄(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡,𝑤𝑤𝑡𝑡)

𝜕𝜕𝑤𝑤𝑡𝑡
 

 
Another RL algorithm used in practice is Temporal Difference (TD) Learning, which 
is a more general approach over Q-Learning. TD-Learning is an approach to learning 
how to predict a quantity that depends on future values of a given signal. It can be 
used to learn both the value function and the Q-function, whereas Q-learning is a 
specific TD-Learning algorithm used to learn the Q-function. 
 
Assume we have a RL system in which a sequence of actions is deterministic.  

 
In such a system, if we initialize values randomly as before, most updates of values 
are based on nothing but random values. “True” information is only slowly transported 
from “right to left”. Here it needs 1000 steps until “true” information arrives at state 1. 
We would prefer to update the values of a state s on something more than just value 
of s+1. If we expand the previous formulation we obtain: 
 

𝑄𝑄1(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) + 𝛾𝛾max𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑁𝑁𝑡𝑡+1) 
 

𝑄𝑄2(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) + 𝛾𝛾𝑟𝑟(𝑠𝑠𝑡𝑡+1,𝑁𝑁𝑡𝑡+1) + 𝛾𝛾2max𝑄𝑄(𝑠𝑠𝑡𝑡+2,𝑁𝑁𝑡𝑡+2) 
 

𝑄𝑄3(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) + 𝛾𝛾𝑟𝑟(𝑠𝑠𝑡𝑡+1,𝑁𝑁𝑡𝑡+1) + 𝛾𝛾2𝑟𝑟(𝑠𝑠𝑡𝑡+2,𝑁𝑁𝑡𝑡+2) +  γ3max𝑄𝑄(𝑠𝑠𝑡𝑡+3,𝑁𝑁𝑡𝑡+3) 

… 
𝑄𝑄𝑛𝑛(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) + 𝛾𝛾𝑟𝑟(𝑠𝑠𝑡𝑡+1,𝑁𝑁𝑡𝑡+1) + ⋯+  𝛾𝛾𝑛𝑛−1𝑟𝑟(𝑠𝑠𝑡𝑡+𝑛𝑛−1,𝑁𝑁𝑡𝑡+𝑛𝑛−1)

+  γnmax𝑄𝑄(𝑠𝑠𝑡𝑡+𝑛𝑛,𝑁𝑁𝑡𝑡+𝑛𝑛) 
 
But again, in a real-world system we cannot access future states, especially in a non-
Markov system. In robotics, RL systems typically perform some actions and remember 
past rewards and states, and apply such updates retrospectively. 
TD-Learning methods learn their estimates in part on the basis of other estimates. 
They learn a guess from a guess - they bootstrap.  
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TD-Learning methods are alternatives to Monte Carlo methods for solving the 
prediction problem. In both cases, the extension to the control problem is via the 
idea of generalized policy iteration (GPI) that we abstracted from dynamic 
programming. This is the idea that policy and value functions should interact in 
such a way that they both move toward their optimal values. 
 
TD-Learning methods are naturally implemented in an on-line, fully incremental 
fashion compared to Monte Carlo methods. With Monte Carlo methods one must 
wait until the end of an episode, because only then is the return known, whereas 
with TD methods one need wait only one time step. 
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8. Evolutionary programming 
 
Evolutionary programming is a method for simulating evolution that has been 
investigated for over 30 years. The inspiration for evolutionary methods goes back to 
the 1850s and the work of Charles Darwin with his theories of evolution, natural 
selection and ‘survival-of-the-fittest’. This chapter tries to offer an introduction to 
evolutionary programming, and indicates its relationship to other methods of 
evolutionary computation, specifically genetic algorithms and evolution strategies. 
 
The efforts within the field of evolutionary computation have generally followed three 
main lines of investigation: (1) genetic algorithms, (2) evolution strategies, or (3) 
evolutionary programming. These techniques are broadly similar and rely on a 
population of competing solutions which are subjected to random alterations and 
compete to be retained as parents of successive reproduction epochs.  
 
The differences between the methods concern the level in the hierarchy of 
evolution being modeled: the chromosome, the individual, or the species. 
 
Looking at the chromosome level, Genetic Algorithms model evolution as a 
succession of changing gene frequencies, where competing solutions are encoded 
as chromosomes in genes. The space of possible solutions is explored by applying 
transformations to the solutions as observed in the chromosomes of living 
organisms (i.e. cross-over, mutation, mating). In contrast, evolutionary 
programming models evolution as a process of adaptive behavior of species, 
rather than adaptive genetic processing. 

 
 
8.1. Introduction to evolutionary computing 
What is Evolutionary computation? In an attempt to answer this question, a generic 
response has been given: An abstraction from the theory of biological evolution 
that is used to create optimization procedures or methodologies, implemented in 
computer software that are used to solve problems. In evolutionary computation 
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populations of solutions are evolved to exploit a continuous range of solution while at 
the same time maintaining a strong behavioral connection between offspring and their 
parents. 
 
Evolutionary programming emerged as an alternative approach to artificial 
intelligence. Rather than emulating human neural computation or human 
behaviors, evolutionary programming was modeled as a process that generates 
organisms of increasing intellect over time. Intelligence was defined, in this 
context, as the ability of an organism to achieve goals in a range of environments 
and evolution is seen as optimization. 
 
8.2 Genetic Algorithms 
 
Genetic algorithms were formally introduced in the 1970s by John Holland at 
University of Michigan. Advances in computing hardware have made them attractive 
for various types of optimization problems. In particular, genetic algorithms work 
very well on mixed (continuous and discrete), combinatorial problems. 
 
In the basic formulation, a gene is a part of the DNA sequence that encodes 
information. Humans roughly have 20500 genes. The DNA sequence is composed 
of double-helix of complementary nucleotides: Adenine (A), Cytosine (C), Guanine 
(G), Thymine (T) and Uracil (U). In normal spiral DNA the bases form pairs between 
the two strands: A with T and C with G.  

 
 
The two individual strings can get completed by free nucleotides as, in principle, all 
information is still available. Bur some modifications can occur during reproduction 
processes (transformations) such as: mutations (i.e. substitution, insertion, 
deletion) or cross-over. 
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Such processes create “modified blueprints” of a biological system, which create a 
modified organism when transcribed (i.e. read out and build in software terms). 
Through “survival of the fittest” only those individuals that have the largest success 
survive, yet taking into account that this is not a goal-directed selection. 
 
How can we use such processes in technology?  
 
Searching a large state-space or n-dimensional surface, GAs may offer significant 
benefits over more typical search of optimization techniques, such as linear 
programming, heuristic, depth-first, breath-first, but they tend to be computationally 
expensive. 
 



Page | 7  
 

In another perspective, GAs are adaptive heuristic search algorithms based on the 
evolutionary ideas of natural selection and genetics. They represent an intelligent 
exploitation of a random search used to solve optimization problems.  
 
Although randomized, GAs are by no means random, instead they exploit 
historical information to direct the search into the region of better performance 
within the search space.  
 
We can see such an algorithm as a 3-step iterative process accounting for a 
stochastic exploration: 

 
GAs are less susceptible to settle in local optima than gradient search methods. 
Moreover, due to the fact that they can optimize nonlinear, discontinuous 
functions, there is no need to formulate them only for differentiable functions.  

Although there are many variations of GAs the core principled algorithm is introduced 
in the following section.  
 
 
 
 
 
 
 
 
 
 
 Initialize all possible solutions xi in a population P 
 Evaluate f(xi) and select “good” xi in the metric of f 
 Repeat 

Apply small 
modifications

(i.e. cross-over) 
on existing 
solutions

Select solutions

Recombine
existing 

solutions
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 for i=0 to k  // k = number of children to produce 
 select P1/2 parents out of P 
 generate xi such through recombination of P1/2 (cross-over) 
 mutate xi 
 evaluate f(xi) 
 add xi to a new population P’ 

 end 
 select new P out of P’ 
 forget P’ 

 until fitness “good enough” 

In the next section we look at the terminology and specific requirements to design 
and implement a GA. 

Encoding 

A chromosome should in some way contain information about solution that it 
represents. A typical way of encoding is a binary string. Each chromosome is 
represented by a binary string. Each bit (gene) in the string can represent some 
characteristics of the solution. The encoding depends mainly on the solved 
problem. For example, one can encode directly integer or real numbers; sometimes 
it is useful to encode some permutations. In an ideal case small changes in the 
representation should result in small changes in the state, and vice versa. This is 
problematic in binary encoding but not in Gray encoding. 

 

 

 

Initialization 
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The population size depends on the nature of the problem. Typically, the initial 
population is generated randomly, allowing the span over the entire search space. 
To accelerate computation, sometimes, solutions may be "seeded" in areas where 
optimal solutions are likely to be found. The size of the initial population determines 
the computational complexity and the exploration ability. 

Fitness function 

It's necessary to be able to evaluate how "good" a potential solution is relative to 
other potential solutions. The fitness function is responsible for performing this 
evaluation and returning, typically, a positive integer number, or fitness value, that 
reflects how optimal the solution is. This is the most important design aspect of a GA.  

Selection criteria 

An important question is how to select parents for crossover. This can be done in 
many ways, but the main idea is to select the better parents in the hope that the 
better parents will produce better offspring. In GAs elitism is often used, but other 
methods like proportional selection, tournament selection, and rank-based 
selection are used. This means, that at least one of a generation's best solution is 
copied without changes to a new population, so the best solution can survive to the 
succeeding generation.  

Typically we can look at this phenomenon from the point of view of a selective 
pressure, or how long will it need for the “best” organism to take over? We can 
differentiate a low pressure scenario, with very long convergence time but offering 
good solutions and a high pressure scenario, with very short convergence time 
but offering a non-optimal solution. 

Reproduction / mutation operators  

After selection an encoding, we can proceed to crossover operation. Crossover 
operates on selected genes from parent chromosomes and creates new offspring. 
The simplest way how to do that is to choose randomly some crossover point (s) 
and copy everything before this point from the first parent and then copy everything 
after the crossover point from the other parent. 

After a crossover is performed, mutation takes place. Mutation is intended to prevent 
falling of all solutions in the population into a local optimum of the solved problem. 
Mutation operation randomly changes the offspring resulted from crossover. 

 

 

 

Sample applications 
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   Travelling Salesman Problem 

Many problems do not require the optimization of a series of real valued parameters, 
but the discovery of an ideal ordered list.  

 

We cannot simply mutate or crossover the chromosome. 

 

One solution would be literal permutation encoding with reorder mutation, 
implemented as shown in the following diagram. 
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Another solution is partially matched crossover (PMX) described as: 

 

Note that cities that are visited twice in one tour are swapped with cities that are visited 
twice in the other tour. Only one representative (the one not in the matching section) 
of such cities is swapped. Thus tour 1” = b c g f a h e d and tour 2” = c b d e g a f 
h. 
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9. Fuzzy Inference Systems 

 
Humans are unconsciously able to address complex, ambiguous, and uncertain 
problems thanks to thinking. The thought process is possible because humans do 
not need the complete description of the problem since they have the capacity to 
reason approximately. Lotfi Zadeh proposed and developed in 1965 a theory of such 
approximate reasoning as an approach to modeling uncertainty. 
 
This new theory provided “a logical system which aims at a formalization of 
approximate reasoning. In this case it is an extension of many-valued logic. 
However the agenda of this theory, Fuzzy Logic (FL) is different from that of the 
traditional many-valued logic. Such key concepts in FL as the concept of linguistic 
variable, fuzzy if-then rule, fuzzy quantification and defuzzification, inference and 
interpolative reasoning, among others, are not addressed in traditional systems.” 
 
FL can be conceptualized as a generalization of classical logic. Modern fuzzy logic 
was developed to model those problems in which imprecise data must be used or in 
which the rules of inference are formulated in a very general way making use of 
diffuse categories. 

9.1 Introduction to Fuzzy Logic 
In this section we will start with an intuitive introduction to fuzzy logic. In our everyday 
language we use a great deal of vagueness and imprecision, that can also be called 
fuzziness. We are concerned with how we can represent and manipulate inferences 
with this kind of information. Fuzzy sets provide a way that is very similar to the human 

reasoning system. But how does human perception work? 

If one asks “How comfortable is this room, is it warm or cold?”, most likely a human 
will answer “It‘s quite cold here”, “Fairly warm”, or “It is too hot for me”. So, the 
characteristics of human's answer will be: imprecise / vague, typically involving 
modifier/hedge of linguistic terms (quite, fairly, too, very, etc.), and implies 
uncertainty. 
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We all use vague information and imprecision to solve problems. Hence, our 
computational methods should be able to represent and manipulate fuzzy and 
statistical uncertainties. But how important is it to be exactly right when a rough answer 
will do? It pays off trading between significance and precision - something that humans 
have been managing for a very long time! 

 

The imprecision in fuzzy models is generally quite high. However, when precision is apparent, 
fuzzy systems are less efficient than more precise algorithms in providing us with the best 
understanding of the system. In the following examples, we explain how many industries have 
taken advantage of the fuzzy theory. 
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Mathematical foundations of fuzzy logic rest in fuzzy set theory, which can be seen 
as a generalization of classical set (crisp) theory. Fuzziness is a language 
concept; its main strength is its vagueness using symbols and defining them. 

In 1965 Prof. Lotfi A. Zadeh introduced fuzzy sets, where many degrees of 
membership are allowed, and indicated with a number between 0 and 1. The point of 
departure for fuzzy sets is simply the generalization of the valuation set from the pair 
of numbers {0,1} to all the numbers in [0,1] as depicted in the following diagram. 

This is called a membership function and describes fuzzy sets. More precisely, 
membership functions are mathematical tools for indicating flexible membership 
to a set (fuzzification), modeling and quantifying the meaning of symbols. They can 
represent a subjective notion of a vague class, such as chairs in a room, size of 
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people, and performance among others. In a typical example one, of temperature 
measurement, can easily understand the generalization capabilities of fuzzy logic and 
the modeling and description of crisp physical quantities. 

Fuzzy Logic formalism 

Formally, the core idea behind fuzzy sets and fuzzy representation of crisp quantities 
can be synthetically depicted in the following diagram. 

A fuzzy set A, corresponding to a universe of discourse X, can be represented by 
an ordered set of pairs:  

A = {(x, μA(x)) | x є X} 
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A fuzzy set may be discrete or continuous, for example: Universe of discourse: cat 
species families, X = {“cat”, “lion”, “tiger”, “leopard”, “cheetah”} and the associated 
fuzzy set “HS” for animals with “high-speed”, HS = {(x, μHS(x)) | x є X} = {(cat, 0.1), 
(lion, 0.3), (tiger, 0.2), (leopard, 0.5), (cheetah, 0.9)} 

Membership functions give numerical meaning to a fuzzy set by mapping crisp 
inputs from a specified domain to membership degrees ranging [0,1] (fuzzification). 
They can have known analytical formulations: triangular, trapezoidal, Gaussian etc. 
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The support of a fuzzy set A is the crisp set that contains all the elements of X that 
have nonzero membership degrees in A,  

supp(A) = { x ∈ X | μA(x) > 0 } 

The boundary is the crisp set that contains all the elements of X that have the 
membership degrees of 0 < μA(x) < 1 in A, 

bnd(A) = { x ∈ X | 0 < μA(x) < 1 } 

The core of a normal fuzzy set A is the crisp set that contains all the elements of X 
that have the membership grades of 1 in A, 

core(A) = { x ∈ X | μA (x) = 1 } 

If the support of a normal fuzzy set consists of a single element x0 of X, which has the 
property: 

supp(A) = core(A) = {x0} this set is called a singleton (see cat HS example). 

Alpha cut set Aα is a crisp set of a fuzzy set A, where 

Aα = { x ∈ X | μA(x) ≥ α } 

Strong alpha cut set Aα is a crisp set of a fuzzy set A, where 

Aα = {x ∈ X | μA(x) > α } 

Linguistic variables have an identifier for a membership function which define the 
partitions (partitioning) of the universe of discourse. This is an application dependent 
setting. For example, a  variable “speed”, which is going to be used as an input for a 
fuzzy control system, might be defined as: S = { very slow, slow, moderate, fast, very 
fast } and will partition the universe of discourse as shown in the following figure. 
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Linguistic variables are used in the fuzzification process to assign a membership 
degree for a certain crisp value for each label of a linguistic variable. In our previous 
example of speed partitioning: 

 

In order to operate on the fuzzy linguistic variables a fuzzy inference system uses 
if-then rules. In the most general form of fuzzy rule is using first order logic and can 
aggregate multiple variables and labels that describe physical quantities, as shown in 
the next figure.  

In general, if there are several input variables x1, x2, …, xn with several logical 
connections (i.e. AND, OR), the fuzzy if-then clauses can be written as: 

The typical operations with crisp sets and Boolean logic can be extended also to fuzzy 
sets by choosing an appropriate operator. There are multiple possibilities to implement 
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typical conjunction and disjunction operators used to link variables in the premise (i.e. 
antecedent) or the conclusions (i.e. consequent).  

 

As previously mentioned fuzzy logic extends classical, bivalent logic, and its operators 
have a different effect, as shown in the next comparative diagram. 

 

The basic formulation of fuzzy if-then rules assumes connecting the antecedent and 
the consequent using an operation called fuzzy implication or relations. Such 
operations are used to model dependencies, correlations or connections between 
variables, quantities or attributes. Moreover, they allow a generalization of the 
definition of fuzzy set from 2-D space to 3-D space, describing the "degree of 
association" of the elements, basically a Cartesian product of two fuzzy sets. 

In a basic example, let’s consider the relationship between the color of a fruit, x, and 
the grade of maturity, y and the effect of the implication. 
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A fuzzy inference system is taking decisions are based on testing of all of the rules, 
by combining or aggregating them in an inference process. In fuzzy aggregation the 
outputs of each rule are combined into a single fuzzy set once for each output variable. 
In this process input is the list of output functions returned by the implication process 
for each rule whereas the output is one fuzzy set for each output variable. 

The typical processing pipeline in a fuzzy system is depicted in the following 
diagram. 

 

In order to understand the underlying mechanisms of a fuzzy inference system we 
describe the processing pipeline above for a given problem, namely the tipping 
problem (adapted from Matlab – Fuzzy toolbox Example). 
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In this problem we design a fuzzy inference system to compute the tip (output) given 
two measures of quality, namely service and food quality. For this limited example we 
choose 3 rules combining the input and output variables with the operators previously 
introduced. 

 

Once the fuzzy inference system has fired all the rules given the current values of the 
input variables the fuzzy value of the output must be brought back to its crisp 
representation. The process is called defuzzification.  
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This process is performed using the membership function of the output variable and 
various mechanisms to defuzzify were developed.  

 

In the next section we will look at how to design and implement a fuzzy inference 
system for control applications, but before let’s take an overview on existing types of 
fuzzy inference systems.  
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Fuzzy inference systems differ through the operators implementing the process of 
implication, aggregation and / or defuzzification. Various types of FIS were developed: 
Mamdani FIS, Larsen FIS, Tsukamoto FIS and TSK (Takagi – Sugeno – Kang) FIS. 
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9.2 Fuzzy control systems 
 
Classic control is based on a detailed I/O function which maps each high-resolution 
quantization interval of the input domain into a high-resolution quantization interval of 
the output domain. Finding a mathematical expression for this detailed mapping 
relationship may be difficult, if not impossible, in many applications.  
 
Fuzzy control is based on an I/O function that maps each very low-resolution 
quantization interval of the input domain into a very low-low resolution quantization 
interval of the output domain. As there are fuzzy quantization intervals covering the 
input and output domains the mapping relationship can be very easily expressed 
using the “if-then” formalism. The overlapping of these fuzzy domains and their 
linear membership functions will eventually allow to achieve a rather high-resolution 
I/O function between crisp input and output variables. 
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A block diagram of a fuzzy control system is shown in the following diagram.  

 

The fuzzy controller is composed of the following four elements:  

• A rule-base (a set of If-Then rules), which contains a fuzzy logic quantification 
of the expert’s linguistic description of how to achieve good control. 

• An inference mechanism (also called an “inference engine” or “fuzzy 
inference” module), which emulates the expert’s decision making in interpreting 
and applying knowledge about how best to control the plant.  

• A fuzzification interface, which converts controller inputs into information that 
the inference mechanism can easily use to activate and apply rules.  

• A defuzzification interface, which converts the conclusions of the inference 
mechanism into actual inputs for the process. 
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In the next section we will focus on the design of fuzzy logic controllers through some 
worked examples of either benchmark control systems or autonomous navigation for 
cars. 
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In the second worked example we analyze the design of a TSK fuzzy controller. Now 
we don’t consider the defuzzification step anymore.  
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10. Online distributed streaming machine learning 
 

During the day when you are reading this, more data will be produced than the 
amount of information contained in all printed material in the world. The Internet Data 
Center estimated the growth of data to be of a factor of 300 between 2005 and 2020, 
expecting to raise from 130 Exabytes to 20,000 Exabytes. 
 
Big Data is one of the most popular terms nowadays, but Big Data is not only about 
the volume. Much of the data is received in real time and is most valuable at the 
time of arrival. For example, we want to detect shares market trends as soon as 
possible; a service operator wants to detect failures from logs within a seconds; and a 
news site may want to train their model to show users content which they are 
interesting in as shown extensively in Figure 1. 
 

 
Figure 1 Big Data Landscape 

 
Big data are often characterized like Volume + Velocity + Variety. Volume describes 
the quantity of data, it is the size of the data which determines the value and potential 
of the data. Variety is the next aspect of Big Data. It describes range of data types 
and sources. The term ‘velocity’ in the context refers to the speed of generation of 
data or how fast the data is generated and processed to meet the demands. This is 
shown in Figure 2. 
 
10.1 Real Time Big Data Analytics 
 
We are going to focus on stream processing or sometimes referenced as fast data, 
where velocity is the key. The demand for stream processing is increasing. Immense 
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amounts of data have to be processed fast from a rapidly growing set of disparate 
data sources. This pushes the limits of traditional data processing infrastructures. 
These stream-based applications include trading, social networks, Internet of 
Things, system monitoring, and many other examples. 

 
Figure 2 Velocity in Big Data 

 
10.2 Stream Processing Engines 

 
Stream processing paradigm simplifies parallel software and hardware by restricting 
the parallel computation that can be performed.  
Given a sequence of data (a stream), a series of operations (functions) is applied 
to each element in the stream, in a declarative way, we specify what we want to 
achieve and not how, as shown in Figure 3. 

 
Figure 3 Stream processing paradigm 
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In general, stream processing systems support a large class of applications in which 
data are generated from multiple sources and are pushed asynchronously to 
servers which are responsible for processing. Therefore, stream processing 
applications are usually deployed as continuous jobs that run from the time of their 
submission until their cancellation.  

Many applications in several domains such as telecommunications, network security 
and large scale sensor networks require online processing of continuous data flows. 
They produce very high loads that requires aggregating the processing capacity 
of many nodes.  

Rather than processing stored data like in traditional database systems, stream 
processing engines process data on-the-fly. This is due to the amount of input that 
discourages persistent storage and the requirement of providing prompt results. 
Queries of streaming application are generally continuous and stateful. Once a 
query is registered, it starts processing events and only stops when the system 
terminates or the query is deregistered from the system. Queries typically maintain 
state such as aggregates of windows or local variables. Query state is kept on the 
same node that executes the query. 

At the most basic level, shown in Figure4, a stream processor, such as Flink, is 
made up of: 

• Data source: Incoming data that stream engine processes 
• Transformations: The processing step, when the stream processor modifies 

incoming data 
• Data sink: Where the processing engine sends data after processing 

 

Figure 4 Stream processing paradigm 
 

Aggregating events (e.g., counts, sums) works differently on streams because it is 
impossible to count all (unbounded). 

 

Figure 5 Stream aggregations 
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Stream processing and windowing makes it easy to compute accurate results over 
streams where events arrive out of order and where events may arrive delayed. 

 

Figure 6 Stream windowing mechanisms 
 
Windowing based on time, count, and data-driven windows. Windows can be 
customized with flexible triggering conditions to support sophisticated streaming 
patterns. 
 
When executed, stream processor engine (e.g. Flink) programs are mapped to 
streaming dataflows, consisting of streams and transformation operators. Each 
dataflow starts with one or more sources and ends in one or more sinks. The dataflows 
resemble arbitrary directed acyclic graphs (DAGs). 

 

 
Figure 7 Stream processor execution 
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For distributed execution, Flink for example, chains operator subtasks together into 
tasks. Each task is executed by one thread. Chaining operators together into tasks 
is a useful optimization: it reduces the overhead of thread-to-thread handover and 
buffering, and increases overall throughput while decreasing latency. 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 7 Stream processor execution 
Figure 8 Distributing stream processing 

 
 
A stream processing engine exploits in-memory data streaming, and natively 
executes iterative processing algorithms which are common in ML. This allows 
data scientists to test their models locally and using subsets of data, and then use 
the same code to run their algorithms at a much larger scale in a cluster setting. 
 

10.3 Machine Learning in Real-Time Big Data Analytics 

In order to deal with evolving data streams, the model learned from the streaming 
data must be able to capture up-to-date trends and transient patterns in the stream. 
To do this, as we revise the model by incorporating new examples, we must also 
eliminate the effects of outdated examples representing outdated concepts. 

Dealing with time-changing data requires strategies for detecting and quantifying 
change, forgetting stale examples, and for model revision. Fairly generic 
strategies exist for detecting change and deciding when examples are no longer 
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relevant. Model revision strategies, on the other hand, are in most cases method-
specific. 

A good idea is to encapsulate all the statistical calculations having to do with 
detecting change and keeping updated statistics from a stream in an abstract data 
type that can then be used to replace the counters and accumulators that typically 
all machine learning and data mining algorithms use to make their decisions, 
including when change has occurred. 

Big Data Stream Learning is more challenging than batch or offline learning, since 
the data may not preserve the same distribution over the lifetime of the stream. 
Moreover, each example coming in a stream can only be processed once, or needs 
to be summarized with a small memory footprint, and the learning algorithms must 
be efficient. 

 

Figure 9 Big Data Stream Learning – A generic view 

In order to deal with evolving data streams, the model learnt from the streaming data 
must capture up-to-date trends and transient patterns in the stream. Updating the 
model by incorporating new examples, we must also eliminate the effects of 
outdated examples representing outdated concepts. 

 

Figure 10 Changes in data streams 
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How to compute the entropy of a collection of infinite data, where the domain of 
the variables can be huge and the number of classes of objects is not known a 
priori? 

How to maintain the k-most frequent items in a retail data warehouse with 3 TB of 
data, 100s of GB of new sales records updated daily with 1000000s different items? 

What becomes of statistical computations when the learner can only afford one 
pass through each data sample because of time and memory constraints; when 
the learner has to decide on-the-fly what is relevant and process it and what is 
redundant and could be discarded? 

Most strategies use variations of the sliding window technique: a window is 
maintained that keeps the most recently read examples, and from which older 
examples are dropped according to some set of rules. 

 

Figure 11 Sliding window mechanisms 

The contents of the sliding window can be used for the three tasks:  

• to detect change (e.g., by using some statistical test on different sub-windows),  
• to obtain updated statistics / criteria from the recent examples, and  
• to have data to rebuild or update the model after data has changed. 

 

Figure 12 Sliding window processing 
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Normally, the user is caught in a tradeoff without solution:  

• a small size (so that the window reflects accurately the current distribution) 
• a large size (so that many examples are available to work on, increasing 

accuracy in periods of stability). 

 

Figure 13 Distribution change in stream processing 

Currently, it has been proposed to use windows of variable size. 

 

10.4 Vertical Hoeffding Tree Classifiers 

Most conventional data mining techniques have to be adapted to run in a 
streaming environment, because of the underlying resource constraints in terms 
of memory and running time. Furthermore, the data stream may often show concept 
drift, because of which adaptation of conventional algorithms becomes more 
challenging. One such important conventional data mining problem is that of 
classification. 

In the classification problem, we attempt to model the class variable on the basis 
of one or more feature variables. While this problem has been extensively studied 
from a conventional mining perspective, it is a much more challenging problem in the 
data stream domain. 

In this section we introduce and illustrate a method for developing decision trees 
algorithms that can adaptively learn from data streams that change over time. We 
take the Hoeffding Tree learner, an incremental decision tree inducer for data 
streams, and use as a basis it to build two new methods that can deal with 
distribution and concept drift. In the basic formulation a decision tree functionality 
is described in Figure 14. 
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Figure 14 Decision tree processing and tree induction process 

Given a set of training examples belonging to n different classes, a classifier 
algorithm builds a model that predicts for every unlabeled instance x the class C to 
which it belongs, synthetically depicted in Figure 15.  

 Figure 15 Classification in streaming 
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The basic decision tree can be adapted for streaming operation, as shown in Figure 
16, and the core principle applied to evolving data, by modifying the number of 
sufficient statistics and decision at the split level. 

 

 

Figure 16 Decision tree for streaming classification and tree induction 

 

Figure 17 Decision tree for streaming classification using Vertical Hoeffding Trees 
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10.5 Adaptive Model Rules Regressors 

Given a set of training examples with a numeric label, a regression algorithm builds 
a model that predicts for every unlabeled instance x the value y=ƒ(x) with high 
accuracy. 

 

Figure 18 Typical regression problem 

Regression analysis is a technique for estimating a functional relationship between 
a dependent variable and a set of independent variables. It has been widely 
studied in statistics, pattern recognition, machine learning and data mining. The most 
expressive data mining models for regression are model trees and regression 
rules.  

Model trees and model rules are among the most performant ones. Trees and rules 
do automatic feature selection, being robust to outliers and irrelevant features; 
exhibit high degree of interpretability; and structural invariance to monotonic 
transformation of the independent variables. One important aspect of rules is 
modularity: each rule can be interpreted per se. 

The AMRules algorithm, is one of the first one-pass algorithm for learning 
regression rule sets from time-evolving streams.  

 

Figure 19 Basics Adaptive Model Rules  

The AMRules algorithm is a one-pass algorithm, able to adapt the current rule set to 
changes in the process generating examples. It is able to induce ordered and 
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unordered rule sets, where the consequent of a rule contains a linear model 
trained with the perceptron rule, for example.  

 

Figure 20 Vertical and Horizontal Adaptive Model Rules 

The experimental results point out that, in comparison to ordered rule sets, unordered 
rule sets are more competitive in terms of performance (MAE and RMSE). AMRules 
is competitive against batch learners even for medium sized datasets. 

A huge advantage of decision rules is comprehensibility, required in many 
business decision making applications. We begin by pipelining the processing of 
each instances into two steps: training and predicting and assigning these steps to 
learner and model aggregator processors in VAMR. This approach has proved to 
increase the throughput for “complex” datasets. Besides, VAMR also provides 
memory scalability as the memory consumption of the model (the rule set) is 
spread among multiple learners. However, VAMR is not scalable in terms of 
throughput due to the bottleneck at the single model aggregator. To address this issue, 
the HAMR, an extended version of VAMR with multiple replicated model 
aggregators. HAMR is shown to be scalable as it can improve the throughput 
proportionally to the number of model aggregators while maintaining good accuracy. 

 

10.6 Perceptrons in streaming 

Recalling from the previous chapters, a perceptron is basically a linear binary 
classifier. Its input is a vector x = [x1, x2…, xd] with real-valued components. 
Associated with the perceptron is a vector of weights w = [w1, w2…, wd], also with 
real-valued components. Each perceptron has a threshold θ. The output of the 
perceptron is +1 if w.x > θ, and the output is −1 if w.x < θ. The special case where w.x 
= θ will always be regarded as “wrong”. The weight vector w defines a hyperplane 
of dimension d−1 – the set of all points x such that w.x = θ. Points on the positive side 
of the hyperplane are classified +1 and those on the negative side are classified −1. A 
perceptron classifier works only for data that is linearly separable, in the sense 
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that there is some hyperplane that separates all the positive points from all the 
negative points. If there are many such hyperplanes, the perceptron will converge to 
one of them, and thus will correctly classify all the training points. If no such 
hyperplane exists, then the perceptron cannot converge to any particular one. For 
a regression task the perceptron model and algorithms is presented in Figure 21, along 
with the stochastic gradient descent (SGD) algorithm used to train it. 

 Figure 21 Perceptron learning for regression in streaming 

The extension from the basic model to a stream classifier is depicted in Figure 22 
along with the simple algorithmic modifications to allow it to operate in evolving data 
streams. 

 

Figure 22 Perceptron learning for classification in streaming 

Induced by ubiquitous scenarios finite training sets, static models, and stationary 
distributions must be completely redefined.  
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The characteristics of the streaming data entail a new vision due to the fact that: 

• Data are made available through unlimited streams that continuously flow, 
eventually at high speed, over time; 

• The underlying regularities may evolve over time rather than being stationary; 
• The data can no longer be considered as independent and identically 

distributed; 
• The data are now often spatially as well as time situated. 

Data streams are a computational challenge to data mining and machine learning 
problems because of the additional algorithmic constraints created by the large volume 
and velocity of data. In addition, the problem of temporal locality leads to a number of 
unique mining challenges in the data stream case, which we tried to cover in the 
present chapter of the lecture. 
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11. Immunological Computation and Artificial Immune Systems 

Basics 

The vertebrate immune system (the one which has been used to inspire the vast 
majority of Artificial Immune Systems to date) is composed of diverse sets of cells 
and molecules that work in collaboration with other systems, such as the neuronal 
and endocrine, to maintain a steady state of operation within the host: this is termed 
homeostasis.  

The role of the Biological Immune System (BIS) is typically viewed as one of 
protection from infectious agents such as viruses, bacteria, fungi and other 
parasites. On the surface of these agents are antigens that allow the identification 
of the invading agents (pathogens) by the immune cells and molecules, which in 
turn provoke an immune response. 

There are two basic types of immunity, innate and adaptive. Innate immunity is 
not directed towards specific invaders into the body, but against any pathogens that 
enter the body. The innate immune system plays a vital role in the initiation and 
regulation of immune responses, including adaptive immune responses. 
Specialized cells of the innate immune system evolved so as to recognize and bind to 
common molecular patterns found only in micro-organisms. However, the innate 
immune system is by no means a complete solution to protecting the body.  

Adaptive, or acquired immunity, is directed against specific invaders, and cells 
are modified by exposure to such invaders. The adaptive immune system mainly 
consists of lymphocytes, which are white blood cells, more specifically B and T-cells. 
These cells aid in the process of recognizing and destroying specific substances. 
Any substance that is capable of generating such a response from the lymphocytes 
is called an antigen or immunogen. Antigens are not the invading microorganisms 
themselves; they are substances such as toxins or enzymes in the microorganisms 
that the immune system considers foreign. Adaptive immune responses are 
normally directed against the antigen that provoked them and are said to be antigen-
specific. 

One of the main capabilities of the immune system is to distinguish own body cells 
from foreign substances, which is called self / non-self discrimination. In general, 
the BIS is capable of recognizing the dangerous elements and deciding an appropriate 
response while tolerating self-molecules and ignoring many harmless substances. 

The immune system is a collection of organs, cells, and molecules responsible for 
dealing with potentially harmful invaders; it also has other functionalities in the body, 
as shown in the next extended diagram. 
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The organs, which constitute the immune system, can be classified into central 
lymphoid organs and peripheral lymphoid organs. The purpose of central lymphoid 
organs is to generate and assist mature immune cells (lymphocytes). Such organs 
include the bone marrow and the thymus. However, peripheral lymphoid organs 
(e.g. lymph nodes, the spleen) facilitate the interaction between lymphocytes and 
antigens, as the antigen concentration increases in these organs.  

Bone Marrow In an abstract sense, naive immune cells are initially generated in the 
bone marrow. These stem cells divide into either mature immune cells (to perform 
immunological function) or precursors of cells that migrate out of the bone marrow 
to continue their maturation process elsewhere. B-cells are produced in the bone 
marrow along with other red blood cells and platelets. 

Thymus In simple terms, the function of the thymus is to produce mature T cells. 
Through a maturation process, sometimes referred to as “thymic education”, T 
cells that are beneficial to the immune system are kept, whereas those T cells that 
might cause a detrimental autoimmune response are eliminated. 

Spleen The spleen is an organ, which is made up of B cells, T cells, macrophages, 
dendritic cells, natural killer cells, and red blood cells. An immune response is initiated 
when macrophages or dendritic cells present the antigen to the appropriate B or T 
cells. This organ can be thought of as an immunological “conference center”. 
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Lymph Nodes The function of lymph nodes is to act as an immunologic filter for the 
fluid known as lymph. Lymph nodes are found throughout the body and they are 
mostly composed of T cells, B cells, dendritic cells, and macrophages. 

The immune system is composed of a variety of cells and molecules, which interact 
among themselves to achieve appropriate immunological responses (biological 
defense). 

Lymphocytes, T Lymphocytes, and B Lymphocytes White blood cells, also called 
lymphocytes, are very important constituents of the immune system. These cells are 
produced in the bone marrow, circulate in the blood and lymph system, and reside 
in various lymphoid organs to perform immunological functions. The primary 
lymphoid organs provide sites where lymphocytes mature and become antigenically 
committed. B and T cells constitute the major population of lymphocytes.  

T cells are specialized cells of the immune system, which are matured in the thymus. 
B cells are another important class of immune cells, which can recognize particular 
antigens. There are billions of these cells circulating the body, constituting an effective 
and distributed anomaly detection and response system. Antibodies (Abs) are a 
particular kind of molecules, called immunoglobulins found in the blood and 
produced by mature B cells, also known as plasma cells. 

Macrophages Macrophages are specialized cells, which engulf large particles such 
as bacteria, yeast, and dying cells by a process called phagocytosis. When a 
macrophage ingests a pathogen, the pathogen becomes trapped in a food vacuole, 
which then fuses with a lysosome. Enzymes and toxic oxygen compounds digest the 
invader within the lysosome. 

Dendritic cells  Dendritic cells are immune cells that form part of the mammal 
immune system. These cells are present in small amounts in those tissues that are 
in contact with the external environment such as the skin and the inner covering of 
nose, lungs, stomach, and intestines. 

 

Immune System Dynamics 

The dynamics of the BIS are provided by a series of processes.  

Immune Recognition: Matching and Binding  

Several immunological processes require an element (cell or molecule) of the immune 
system to recognize the presence of another element. T cell recognition is based on 
the complementarity between the binding region of the cell molecule and the receptor. 
For instance, antigens are detected when a molecular bond is established between 
the antigen and receptors on the surface of B cells, as shown in the next figure. 
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Because of the large size and complexity of most antigens, only parts of the antigen, 
discrete sites called epitopes, get bound to B cell receptors. Multiple receptors bind 
to an antigen with varying affinity, that is, the more complementary the structures of 
the epitope and the B cell receptor are, the more likely for a stronger bond to occur. 

The response to the presence of antigens is composed of two interlinked 
mechanisms: innate immunity and adaptive immunity. 

When the immune system has been exposed to an antigen for a second time, it 
reacts quickly and rigorously (measured by the production of antibodies). This is 
called secondary immune response, in contrast to the first encounter with the 
antigen, in which a slower response, called primary immune response occurs, as 
shown in the following diagram.  

 

This augmented antibody response is due to the existence of memory cells, which 
rapidly produce plasma cells on antigen stimulation. Thus, the immune system 
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learns from encounters with antigens to improve its response in subsequent 
encounters, producing a so-called immunological memory. 

 

Immunological computation 
From the point of view of information processing, the biological immune system 
exhibits many interesting characteristics; some of which are: 

Pattern matching The immune system is able to recognize specific antigens and 
generate appropriate responses. This is accomplished by a recognition 
mechanism based on chemical binding of receptors and antigens. This binding 
depends on their molecular shapes and electrostatic charges.  

Feature extraction Generally, immune receptors do not bind to a complete antigen, 
but rather to portions of it (peptides). Accordingly, the immune system can recognize 
an antigen just by matching segments of it. Peptides are presented to lymphocyte 
receptors by Antibody Presenting Cells (APC). Therefore, such APCs act as filters 
that can extract the important information and remove the molecular noise.  

Learning and memory A major feature of the adaptive immune system is that it is 
able to learn through its interaction with the environment. The first time an antigen 
is detected, a primary response is induced, which includes proliferation and 
subsequent reduction of lymphocytes. Some of these lymphocytes are kept as 
memory cells. The next time the same antigen is detected, memory cells generate 
a faster and more intense response (secondary response). Accordingly, memory 
cells work as an associative (highly) distributed memory.  

Diversity Clonal selection and hypermutation mechanisms are constantly testing 
different detector configuration for known and unknown antigens. This is a highly 
combinatorial process that explores the space of possible configurations looking 
for close-to-optimum receptors that can cope with all types of antigens. Exploration 
is balanced with exploitation by favoring the reproduction of promising 
individuals.  

Distributed processing Unlike the nervous system, the immune system is not 
centrally controlled. Detection and response can be executed locally and 
immediately without communicating with any central organ. This distributed 
behavior is accomplished by billions of immune molecules and cells that circulate 
around the blood and lymph systems and are capable of making decisions in a local 
collaborative environment. 

Self-regulation Depending on the severity of the attack, response of the immune 
system can range from very light and almost imperceptible to very strong. A stronger 
response uses a lot of resources to help ward off the attacker. Once the invader is 
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eliminated, the immune system regulates itself to stop the delivery of new resources 
and release the used ones.  

Self-protection By protecting the body as a whole, the immune system is also 
protecting itself. It means that there is no other additional system to protect the 
immune system; hence, it can be said that the immune system is self-defending. 

Given these features and there have been developed a series of Immunity-Based 
Computational Models and based on the Specific Immunological Concepts we 
introduced in the Basics section. These are summarized in the following table with 
references to seminal work. 

 

Common terminologies that are used in most immune algorithms and their 
corresponding terms used in machine learning are listed in the following table. 
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Artificial Immune Systems 

Artificial Immune Systems (AIS) is a diverse area of research that attempts to bridge the 
divide between immunology and engineering and are developed through the application of 
techniques such as mathematical and computational modeling of immunology, 
abstraction from those models into algorithm (and system) design and implementation in 
the context of engineering. AIS has become known as an area of computer science and 
engineering that uses immune system metaphors for the creation of novel solutions to 
problems. 

In this section we outline a few of the basic immune algorithms. We provide pseudocode 
and an outline description. 

Algorithms 

Negative Selection 

The process of deleting self-reactive lymphocytes is termed clonal deletion and is 
carried out via a mechanism called negative selection that operates on lymphocytes 
during their maturation. For T-cells this mainly occurs in the thymus, which provides 
an environment rich in antigen presenting cells that present self-antigens. Immature 
T-cells that strongly bind these self-antigens undergo a controlled death (apoptosis). 
Thus, the T-cells that survive this process should be unreactive to self-antigens. The 
property of lymphocytes not to react to the self is called immunological tolerance 
 
Negative selection algorithms are inspired by the main mechanism in the thymus that 
produces a set of mature T-cells capable of binding only non-self antigens. The first 
negative selection algorithm was proposed by Forrest et al (1994) to detect data 
manipulation caused by a virus in a computer system. The starting point of this 
algorithm is to produce a set of self-strings, S, that define the normal state of the 
system. The task then is to generate a set of detectors, D, that only bind/recognize the 
complement of S. These detectors can then be applied to new data in order to classify 
them as being self or non-self, thus in the case of the original work by Forrest et al , 
highlighting the fact that data has been manipulated. The algorithm of Forrest et 
al produces the set of detectors via the process outlined in below. 
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Clonal Selection 

According to Burnet's 1959 clonal selection theory, the immune system repertoire 
undergoes a selection mechanism during the lifetime of the individual. The theory 
states that on binding with a suitable antigen, activation of lymphocytes occurs. Once 
activated, clones of the lymphocyte are produced expressing identical receptors to the 
original lymphocyte that encountered the antigen. Thus a clonal expansion of the 
original lymphocyte occurs.  

This ensures that only lymphocytes specific to an activating antigen are produced in 
large numbers. The clonal selection theory also stated that any lymphocyte that have 
antigen receptors specific to molecules of the organism's own body must be deleted 
during the development of the lymphocyte. This ensures that only antigen from 
a pathogen might cause a lymphocyte to clonally expand and thus elicit a destructive 
adaptive immune response. In this sense, the immune system can be viewed as a 
classifier of antigens into either self-antigen or non-self antigen, with non-self antigen 
assumed to be from a pathogen and thus needs to be removed from the body. 
 
During the clonal expansion of B-cells (but not T-cells), the average antibody affinity 
increases for the antigen that triggered the clonal expansion. This phenomenon is 
called affinity maturation, and is responsible for the fact that upon a subsequent 
exposure to the antigen, the immune response is more effective due to the antibodies 
having a higher affinity for the antigen. Affinity maturation is caused by a somatic 
hypermutation and selection mechanism that occurs during the clonal expansion of B-
cells. Somatic hypermutation alters the specificity of antibodies by introducing random 
changes to the genes that encode for them. 

 The clonal selection theory has been used as inspiration for the development of AIS 
that perform computational optimization and pattern recognition tasks. In particular, 
inspiration has been taken from the antigen driven affinity maturation process of B-
cells, with its associated hypermutation mechanism. These AIS also often utilize the 
idea of memory cells to retain good solutions to the problem being solved. In de Castro 
and Timmis' book, they highlight two important features of affinity maturation in B-cells 
that can be exploited from the computational viewpoint. The first of these is that the 
proliferation of B-cells is proportional to the affinity of the antigen that binds it, thus the 
higher the affinity, the more clones are produced. Secondly, the mutations suffered by 
the antibody of a B-cell are inversely proportional to the affinity of the antigen it binds. 
Utilizing these two features, de Castro and Von Zuben developed one of the most 
popular and widely used clonal selection inspired AIS called CLONALG, which has 
been used to perform the tasks of pattern matching and multi-modal function 
optimization. 
 
When applied to pattern matching, a set of patterns, S, to be matched are considered 
to be antigens. The task of CLONALG is to then produce a set of memory antibodies, 
M, that match the members in S. This is achieved via the algorithm outlined below. 
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Immune Networks 

In 1974, Jerne proposed an immune network theory to help explain some of the 
observed emergent properties of the immune system, such as learning and memory. 
The premise of immune network theory is that any lymphocyte receptor within an 
organism can be recognized by a subset of the total receptor repertoire. The receptors 
of this recognizing set have their own recognizing set and so on, thus an immune 
network of interactions is formed. Immune networks are often referred to 
as idiotypic networks. In the absence of foreign antigen, Jerne concluded that the 
immune system must display a behavior or activity resulting from interactions with 
itself, and from these interactions immunological behavior such as tolerance and 
memory emerge. 
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Real-world Applications  

Immunological computation (IC) techniques (or artificial immune systems) have 
been used as a problem solver in a wide range of domains such as optimization, 
classification, clustering, anomaly detection, machine learning, adaptive 
control, and associative memories.  

They have also been used in conjunction with other methods (hybridized) such as 
genetic algorithms (GAs), neural networks, fuzzy logic, and swarm intelligence. IC 
includes real-world applications of computer security, fraud detection, robotics, fault 
detection, data mining, text mining, image and pattern recognition, bioinformatics, 
games, scheduling, etc. 

Methodology of applying AIS 

To apply an immunity-based model to solve a particular problem in a specific domain, 
one should select the immune algorithm depending on the type of problem that needs 
to be solved.  

Accordingly, the first step should be to identify the elements involved in the problem 
and how they can be modeled as entities in a particular AIS. To encode such entities, 
a representation scheme for these elements should be chosen, such as a string 
representation, real-valued vector, or hybrid representation.  

Subsequently, appropriate affinity/distance measures, which are to be used to 
determine corresponding matching rules, should be defined.  

The next step should be to decide which AIS will be better to generate a set of 
suitable entities that can provide a good solution to the problem at hand. The 
following diagram shows the necessary steps to solve problems using an 
immunological approach. 

 

Computer security seems to be analogous to the biological defense in many 
respects; thus we can learn a lesson from the immune system to develop digital 
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immunity. Majority of AIS works have been devoted to using some immunological 
metaphor for developing digital defense systems. AISs used varied notions of data 
protection and anomaly to provide a general-purpose protection system to augment 
current computer security systems. The security of computer systems depends on 
activities such as detecting unauthorized use of computer facilities, maintaining the 
integrity of data files, and preventing the spread of computer viruses, following a 
scheme as the one shown in the following diagram. 

 

Robot control works focused on the development of a dynamic decentralized 
consensus-making mechanism based on the “immune network theory.” They 
attempted to create a mechanism by which a single, self-sufficient autonomous robot, 
called the immunoid, could perform the task of collecting various amounts of garbage 
from a constantly changing environment.  

For the immunoid to make the best decision, it detects antigens and matches the 
content of the antigen with a selection of all the antibodies that it possesses. Their 
model included the concepts of “dynamics,” responsible for the variation of the 
concentration level of antibodies, and “metadynamics,” which maintained the 
appropriate repertoire of antibodies. 

The authors used the metaphors of antibodies, which were potential behaviors of the 
immunoid; antigens corresponded to environmental inputs such as existence of 
garbage, wall, and home bases, as shown in the following diagram. 
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The field of fault diagnosis needs to accurately predict or recover from faults 
occurring in plants, machines such as refrigeration systems, communications such as 
telephone systems, and transportations such as aircrafts. 

Active diagnosis continually monitors for consistency between the current states of the 
system with respect to the normal state. Each sensor can be equated with a B cell, 
connected through the immune network with each sensor maintaining a time-variant 
record of sensory reliability, thus creating a dynamic system.  

An AIS technique was applied to refrigerated cabinets in supermarkets to detect the 
early symptoms of icing up. 

An aircraft fault-detection system, called multilevel immune learning detection (MILD), 
was developed to detect a broad spectrum of known as well as unforeseen faults. 
Empirical study was conducted with datasets collected through simulated failure 
conditions using National Aeronautics and Space Administration (NASA) Ames C-17 
flight simulator. Three sets of in-flight sensory information—namely, body-axes roll 
rate, pitch rate, and yaw rate were considered to detect five different simulated faults: 
one for engine, two for the tails, and two for the wings. The MILD implemented a real-
valued negative selection (RNS) algorithm, where a small number of specialized 
detectors (as signatures of known failure conditions) and a set of generalized detectors 
(for unknown or possible faults) are generated. 
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Researchers argued that the immunological memory is a member of the family of 
sparsely distributed memories, and it derives associative and robust properties 
from a sparse and distributed nature of sampling. The following figure illustrates the 
formation of immune memory (as the concentration level of various immune cells) 
during the primary and secondary responses. 

 

Another interesting application of AIS is in gaming. More precisely, for example, to 
the problem of playing knots and crosses. In this system, each B cell corresponded to 
a particular board state containing a nine-digit antibody. The good moves from one 
state to another meant that those two B cells would have strong affinity or a connection 
in the B cell network. Later, this group also applied this algorithm to the domain of 
case-based reasoning. In this system, each case is represented by a B cell object and 
the case memory is built with the B cell network, with similar cases being linked 
together. The memory was self-organizing in nature. 

In a highly relevant AIS application the CLONALG algorithm was used for software 
testing. Generated test datasets are evaluated using the mutation testing adequacy 
criteria and are used to direct the search of new tests. Mutation testing generates 
versions of a program containing simple faults and then finds tests to indicate the 
program’s symptoms. The developed immune system for mutation testing is based on 
the clonal selection algorithm. 
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12. Neuromorphic Systems and Spiking Neural Networks 

Basics of neuromorphic systems  

Neuromorphic engineering is concerned with the design and fabrication of artificial 
neural systems whose architecture and design principles are based on those of 
biological nervous systems. Neuromorphic systems of neurons and synapses can be 
implemented in the electronic medium CMOS (complementary metal oxide 
semiconductor) using hybrid analog/digital VLSI (very large-scale integrated) 
technology. 

The concept roots at Caltech during the mid-1980s, this time in the research of Carver 
Mead, who had already made major conceptual contributions to the design and 
construction of digital VLSI systems. He recognized that the use of transistors for 
computation had changed very little from the time when John Von Neumann first 
proposed the architecture for the programmable serial computer. 

The design of biological neural computation is very different from that of modern 
computers. Neuronal networks process information using energy-efficient, 
asynchronous, event-based methods. Biology uses self-construction, self-repair, and 
self-programming, and it has learned how to flexibly compose complex behaviors from 
simpler elements. Of course, these biological abilities are not yet understood. But they 
offer an attractive alternative to conventional technology and have enormous 
consequences for future artificial information processing and behavior systems. 

The challenge for neuromorphic engineering is to explore the methods of biological 
information processing in a practical electrical engineering context. 

Digital and Analog in Neuromorphic VLSI Systems 

The majority of integrated circuits represent numbers as binary digits. Binary digits are 
used because it is possible to standardize the behavior of transistors so that their state 
can be determined reliably to a single bit of accuracy. The reliable bits can then be 
combined to encode variables to an arbitrarily high precision. 

For many problems, particularly those in which the input data are ill-conditioned and 
the computation can be specified in a relative matter, biological solutions are many 
orders of magnitude more effective than those that engineers have been able to 
implement using digital methods. This advantage is due principally to biology’s use of 
elementary physical phenomena as computational primitives and to the representation 
of information by the relative values of analog signals rather than by the absolute 
values of digital signals. Typically, it is this style of processing that neuromorphic 
engineers explore. Their systems are large collections of communicating 
computational primitives implemented either in analog or, more commonly, in hybrid 
analog–digital circuits. 
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Neurons in Silicon  

One of the central goals of neuromorphic engineering is to capture the computational 
principles of neurons and their networks in hardware. A cornerstone of this quest has 
been the development over the last decade of hybrid analog–digital VLSI neurons, 
together an infrastructure for composing networks of these neurons. It is now possible 
to assemble quite complex systems of such neurons. 

Integrate-and-Fire Models  

Neurons communicate by pulses (or spikes) that propagate along electrically lossy 
point-to-point wires that are the axons. Real neurons have a complex morphology and 
even more complex biophysics, whose full emulation is beyond the reach of present 
electronic technology. Nevertheless, the integrate-and-fire neuron (I&F), which is a 
bold simplification of real neurons, has proved to have significant explanatory power 
in understanding the behavior of neuronal networks both in theory and simulation. A 
Hardware depiction of such an analog I&F neuron in provided in the following diagram. 

 

The input current Iin is integrated on to the neuron’s membrane capacitor Cmem until 
the spiking threshold is reached. At that point the output signal Vspk goes from zero 
to the power supply rail, signaling the occurrence of a spike. Then the membrane 
capacitor is reset to zero, and the input current starts to be integrated again. The leak 
module implements a current leak on the membrane. The spiking threshold module 
controls the voltage at which the neuron spikes. The adaptation module subtracts a 
firing rate dependent on current from the input node. The amplitude of this current 
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increases with each output spike and decreases exponentially with time. The 
refractory period module sets a maximum firing rate for the neuron. The positive 
feedback module is activated when the neuron begins to spike and is used to reduce 
the transition period in which the inverters switch polarity, dramatically reducing power 
consumption. The circuit’s biases (Vlk, Vadap, Valk, Vsf, and Vrf) are all subthreshold 
voltages that determine the neuron’s properties. 

Conductance-Based Models  

These VLSI I&F neurons provide convenient approximations of the behavior of 
neuronal soma without committing to the overhead of emulating the plethora of 
voltage-dependent conductances and currents present in real neurons. But, if 
necessary, these conductances can be emulated using subthreshold CMOS circuits. 

The dynamics of these types of circuits is qualitatively similar to the Hodgkin–Huxley 
mechanism without implementing their specific equations. An example of this type of 
silicon neuron circuit is shown in the next figure. 

 

The passive module implements a conductance term that models the passive leak 
behavior of a neuron; in the absence of stimulation, the membrane potential Vmem 
leaks to Eleak following first-order low-pass filter dynamics. The sodium module 
implements the sodium activation and inactivation circuits that reproduce the sodium 
conductance dynamics observed in real neurons. The potassium module implements 
the circuits that reproduce the potassium conductance dynamics. The bias voltages 
Gleak, VtNa, and VtK determine the neuron’s dynamic properties, whereas GNaon, 
GNaoff, GK, and Vthr are used to set the silicon neuron’s action potential 
characteristics. 
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Axons, Action Potentials, and the Address–Event Representation 

Biological neurons communicate with one another using dedicated point-to-point 
axons. The all-or-nothing action potential can be translated into a discrete level signal, 
which is robust against noise and inter-chip variability, and can be conveniently 
transmitted between chips and easily interfaced to standard logic and computer 
systems. In the Address Event Representation (AER) method, the action potentials 
generated by a particular neuron are transformed into an address that identifies the 
source neuron and then broadcast on a common data bus. Many silicon neurons can 
share the same bus because switching times in CMOS and on the bus are much faster 
than the switching times of neurons. Events generated by silicon neurons can be 
broadcast and removed from a data bus at frequencies greater than a megahertz. 
Therefore, more than 1000 address events could be transmitted in the time it takes 
one neuron to complete a single action potential. The addresses are detected by the 
target synapses, which then initiate their local synaptic action as shown in the next 
figure. 

 

Asynchronous communication scheme between two chips (i.e. artificial neurons) using 
the address–event representation (AER). When a neuron on the source chip 
generates an action potential, its address is placed on a common digital bus. The 
receiving chip decodes the address events and routes them to the appropriate 
synapses. 
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Spiking Neural Networks 

The hardware simulation of the brain is only one part of the problem. Although our 
current software and algorithms can operate on multi-processor machines with tens of 
cores, they are far from being able to run in parallel on brain-inspired machines with 
hundreds of thousands or millions of cores. 

The Neural Engineering Framework is a method used for constructing neural 
simulations, and among one of the most mature and successful approaches for 
instantiating spiking neural networks in software. 

The framework was initially developed for understanding neurobiological systems and 
is summarized below through the "Principles of Neural Engineering". The creators 
used these principles to define a methodology for constructing simulations of neural 
systems. They had great success in applying both the principles and the related 
methodology to constructing models of perceptual, motor, and cognitive systems. 

Principles of Neural Engineering 

1. Neural representations are defined by the combination of nonlinear encoding 
(exemplified by neuron tuning curves) and weighted linear decoding. 

2. Transformations of neural representations are functions of variables that are 
represented by neural populations. Transformations are determined using an 
alternately weighted linear decoding (i.e., the transformational decoding as 
opposed to the representational decoding).  

3. Neural dynamics are characterized by considering neural representations as 
control theoretic state variables. Thus, the dynamics of neurobiological systems 
can be analyzed using control theory. 

NENGO 

Nengo is a graphical and scripting based Python package for simulating large-scale 
neural networks that uses the three principles of Neural Engineering Framework. 

Nengo is highly extensible and flexible. You can define your own neuron types, 
learning rules, optimization methods, reusable subnetworks, and much more. You can 
also get input directly from hardware, build and run deep neural networks, drive robots, 
and even implement your model on a completely different neural simulator or 
neuromorphic hardware. 

Nengo is a powerful development environment at every scale. Among other 
things, Nengo is used to implement networks for deep learning, vision, motor control, 
visual attention, serial recall, action selection, working memory, attractor dynamics, 
inductive reasoning, path integration, and planning with problem solving. Nengo has 
libraries specifically designed to help with cognitive modelling, deep learning, adaptive 
control, and accurate dynamics, to name a few. 
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Encoding 

Neural populations represent time-varying signals through their spiking responses. A 
signal is a vector of real numbers of arbitrary length. This example is a 1D signal going 
from -1 to 1 in 1 second. 

 

These signals drive neural populations based on each neuron’s tuning curve (which is 
similar to the current-frequency curve, if you’re familiar with that). The tuning curve 
describes how much a particular neuron will fire as a function of the input signal. 

 

We can drive these neurons with our input signal and observe their spiking activity 
over time. 
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Decoding 

We can estimate the input signal originally encoded by decoding the pattern of spikes. 
To do this, we first filter the spike train with a temporal filter that accounts for 
postsynaptic current (PSC) activity. 

 

Then we multiply those filtered spike trains with decoding weights and sum them 
together to give an estimate of the input based on the spikes. 

The decoding weights are determined by minimizing the squared difference between 
the decoded estimate and the actual input signal. 

 

The accuracy of the decoded estimate increases as the number of neurons increases. 

A complete overview can be visualized in the following diagram. 

 

Any smooth signal can be encoded and decoded. 
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Encoding and decoding allow us to encode signals over time, and decode 
transformations of those signals. In fact, we can decode arbitrary transformations of 
the input signal, not just the signal itself (as in the previous example). Let’s decode the 
square of our white noise input. 

 

Notice that the spike trains are exactly the same. The only difference is how we’re 
interpreting those spikes. We programmed Nengo to compute a new set of decoders 
that estimate the function x2. In general, the transformation principle determines how 
we can decode spike trains to compute linear and nonlinear transformations of signals 
encoded in a population of neurons.  
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We can then project those transformed signals into another population, and repeat the 
process. Essentially, this provides a means of computing the neural connection 
weights to compute an arbitrary function between populations. Suppose we are 
representing a sine wave. 

Linear transformations of that signal involve solving for the usual decoders, and 
scaling those decoding weights. Let us flip this sine wave upside down as it is 
transmitted between two populations (i.e. population A and population -A). 

 

Nonlinear transformations involve solving for a new set of decoding weights. Let us 
add a third population connected to the second one and use it to compute (−A)2 
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So far, we have been considering the values represented by ensembles as generic 
“signals.” However, if we think of them instead as state variables in a dynamical 
system, then we can apply the methods of control theory or dynamic systems theory 
to brain models. Nengo automatically translates from standard dynamical systems 
descriptions to descriptions consistent with neural dynamics. 

In order to get interesting dynamics, we can connect populations recurrently (i.e., to 
themselves). Below is a simple harmonic oscillator implemented using the third 
principle. It needs is a bit of input to get it started. 

 

 

 

 

 

 

 

 

 


