
Page | 1

 Computational

Page | 2

Acknowledgement

The course provides an introduction to theory and application of neuronal (deep)
networks, neuromorphic systems, fuzzy control techniques, support-vector machines,
evolutionary and genetic algorithms for optimization, immunological computation and
artificial immune systems, reinforcement learning, distributed agent-based learning
and on-line streaming machine learning. It is mainly based on the Computational
Intelligence Course taught by Cristian Axenie and Prof. Jorg Conradt at TU Munich.
The materials shall only be used within the class and not distributed outside.

Page | 1

Contents

Lectures

1. Introduction to Artificial Intelligence and Machine Learning

2. Traditional computation

2.1. Sorting algorithms

2.2. Graph search algorithms

3. Supervised neural computation

3.1. Biological neurons vs. artificial neurons

3.2. Learning in artificial neurons

3.3. From single neurons to neural networks

3.4. Learning in neural networks: Error Backpropagation in Multi-Layer Neural Networks

3.5. Supervised learning: tips and tricks

4. Unsupervised neural computation

4.1. Introduction to unsupervised learning

4.2. Radial Basis Functions

4.3. Vector Quantization

4.4. Kohonen’s Self-Organizing-Maps

4.5. Hopfield Networks

5. Deep Neural Learning

5.1. Fundamentals of Deep Networks

5.2. Common Architectural Principles of Deep Networks

5.3. Building Blocks of Deep Networks.

5.4. Major Architectures of Deep Networks

6. Technical implementations of neural computation

6.1. Recurrent networks

6.2. Time-series prediction

6.3. Support Vector Machines

6.4. Liquid State Machines

7. Reinforcement Learning

7.1. Introduction to Reinforcement Learning

7.2. Q-Learning

8. Evolutionary programming

8.1. Introduction to evolutionary computing

8.2. Genetic Algorithms

9. Fuzzy Inference Systems

9.1. Introduction to Fuzzy Logic

9.2. Fuzzy control systems

10. Online distributed streaming machine learning

10.1. Machine Learning in Real-Time Big Data Analytics

11. Immunological Computation and Artificial Immune Systems

12. Neuromorphic Systems and Spiking Neural Networks

Page | 2

1. Introduction to Artificial Intelligence and Machine Learning

What is Artificial Intelligence?

According to Wikipedia:

i.e. usually refers to the ability of a computer to learn a specific task from data or
experimental observation. But generally, computational intelligence is a set of nature-
inspired computational methodologies and approaches to address complex real-world
problems to which mathematical or traditional modeling cannot offer explicit solutions.

But what is intelligence?

Chess-playing GO playing

60’s vision of intelligence: machine
beating humans
today achieved through brute force
search and sorting on even phone CPU

the ultimate game mastered by humans,
exponential solution search space
2016 a PC running artificial neural
networks beats the best human player

But why is it computational?

Transferring principles from biology and its solutions to problems into computer
systems.

In a formal way, how can we describe intelligence?

From a computational point of view, intelligence can be described as the superposition
of all processing steps applied to the input a system receives to compute an output.

Page | 3

In computation theory this will be equivalent to a Turing machine: a mathematical
model of a hypothetical computing machine which can use a predefined set of rules to
determine a result from a set of input variables.

This formalism has also generated a test for machine intelligence, the Turing Test
which states that: a machine is intelligent is able to exhibit intelligent behavior similar
to that of a human.

The focus of the class and brief summary

During the class we will discuss methods of processing input to extract meaning,
typically in biologically inspired ways and emphasize differences from traditional
computing.

Sorting

 Different strategies for sorting

 Advantages and disadvantages on large datasets

Searching in graphs

 Graph traversal algorithms

 Dynamic Programming

Neural networks

 Architecture
o Single neuron processing
o Multi-layer neural

networks

 Tasks
o Classification
o Regression (function approximation)

 Learning (supervised)
o The system has the correct (expected)

answer and can improve its estimate and
take decisions

Page | 4

Neural networks

 Learning (unsupervised)
o The system doesn’t have the correct (expected) answer, yet such a

system can:
 learn the underlying structure of the data

 extract
underlying clusters

 reconstruct distorted patterns after previously learning them

Radial Basis Functions

Radial basis functions can take complex forms (e.g. Gaussian - real valued functions
whose output depends on the distance from a particular point) and usually used for
function approximation.

Page | 5

Fuzzy systems

How does human perception work?

The characteristics of human's answer
will be:

 Imprecise / vague

 Involving modifier/hedge of
linguistic term (quite, fairly, too,
very, etc.)

 Implies uncertainty

Fuzzy logic is based on uncertain reasoning using linguistic terms and rules based on
human-like reasoning: IF x THEN y.

Evolutionary algorithms

Mimic biological evolution and its mechanisms for combining genetic material towards
survival of the fittest. Used in optimization problems for which little is known about the
underlying function.

Reinforcement Learning

Studies how agents ought to take actions in an environment so as to maximize some
notion of cumulative reward.

Page | 6

Statistical Learning

Framework for machine learning drawing from the fields of statistics and functional
analysis dealing with the problem of finding a predictive function based on data.

Assumes collecting large amounts of data to recognize complex patterns, e.g.
classification using Support Vector Machines.

Online/Streaming Machine Learning

Stream processing paradigm simplifies parallel software and hardware by restricting

the parallel computation that can be performed.

Given a sequence of data (a stream), a series of operations (functions) is applied

to each element in the stream, in a declarative way, we specify what we want to

achieve and not how.

Page | 7

Immunological Computation

Artificial Immune Systems (AIS) is a diverse area of research that attempts to bridge the

divide between immunology and engineering and are developed through the application of

techniques such as mathematical and computational modeling of immunology,

abstraction from those models into algorithm (and system) design and implementation in

the context of engineering. AIS has become known as an area of computer science and

engineering that uses immune system metaphors for the creation of novel solutions to

problems.

Neuromorphic Computing

Neuromorphic engineering is concerned with the design and fabrication of artificial
neural systems whose architecture and design principles are based on those of
biological nervous systems. Neuromorphic systems of neurons and synapses can be
implemented in the electronic medium CMOS (complementary metal oxide
semiconductor) using hybrid analog/digital VLSI (very large-scale integrated)
technology.

Asynchronous communication scheme between two chips (i.e. artificial neurons) using
the address–event representation (AER).

Page | 2

Acknowledgement

The course provides an introduction to theory and application of neuronal (deep)
networks, neuromorphic systems, fuzzy control techniques, support-vector machines,
evolutionary and genetic algorithms for optimization, immunological computation and
artificial immune systems, reinforcement learning, distributed agent-based learning
and on-line streaming machine learning. It is mainly based on the Computational
Intelligence Course taught by Cristian Axenie and Prof. Jorg Conradt at TU Munich.
The materials shall only be used within the class and not distributed outside.

Page | 3

Contents
Lectures
1. Introduction to Artificial Intelligence and Machine Learning
2. Traditional computation

2.1. Sorting algorithms
2.2. Graph search algorithms

3. Supervised neural computation
3.1. Biological neurons vs. artificial neurons
3.2. Learning in artificial neurons
3.3. From single neurons to neural networks
3.4. Learning in neural networks: Error Backpropagation in Multi-Layer Neural Networks
3.5. Supervised learning: tips and tricks

4. Unsupervised neural computation
4.1. Introduction to unsupervised learning
4.2. Radial Basis Functions
4.3. Vector Quantization
4.4. Kohonen’s Self-Organizing-Maps
4.5. Hopfield Networks

5. Deep Neural Learning
5.1. Fundamentals of Deep Networks
5.2. Common Architectural Principles of Deep Networks
5.3. Building Blocks of Deep Networks.
5.4. Major Architectures of Deep Networks

6. Technical implementations of neural computation
6.1. Recurrent networks
6.2. Time-series prediction
6.3. Support Vector Machines
6.4. Liquid State Machines

7. Reinforcement Learning
7.1. Introduction to Reinforcement Learning
7.2. Q-Learning

8. Evolutionary programming
8.1. Introduction to evolutionary computing
8.2. Genetic Algorithms

9. Fuzzy Inference Systems
9.1. Introduction to Fuzzy Logic
9.2. Fuzzy control systems

10. Online distributed streaming machine learning
10.1. Machine Learning in Real-Time Big Data Analytics

11. Immunological Computation and Artificial Immune Systems
12. Neuromorphic Systems and Spiking Neural Networks

Page | 4

1. Introduction to Artificial Intelligence and Machine Learning

What is Artificial Intelligence?

According to Wikipedia:

i.e. usually refers to the ability of a computer to learn a specific task from data or
experimental observation. But generally, computational intelligence is a set of nature-
inspired computational methodologies and approaches to address complex real-world
problems to which mathematical or traditional modeling cannot offer explicit solutions.

But what is intelligence?

Chess-playing GO playing

60’s vision of intelligence: machine
beating humans
today achieved through brute force
search and sorting on even phone CPU

the ultimate game mastered by humans,
exponential solution search space
2016 a PC running artificial neural
networks beats the best human player

But why is it computational?

Transferring principles from biology and its solutions to problems into computer
systems.

In a formal way, how can we describe intelligence?

From a computational point of view, intelligence can be described as the superposition
of all processing steps applied to the input a system receives to compute an output.

Page | 5

In computation theory this will be equivalent to a Turing machine: a mathematical
model of a hypothetical computing machine which can use a predefined set of rules to
determine a result from a set of input variables.

This formalism has also generated a test for machine intelligence, the Turing Test
which states that: a machine is intelligent is able to exhibit intelligent behavior similar
to that of a human.

The focus of the class and brief summary

During the class we will discuss methods of processing input to extract meaning,
typically in biologically inspired ways and emphasize differences from traditional
computing.

Sorting

• Different strategies for sorting
• Advantages and disadvantages on large datasets

Searching in graphs

• Graph traversal algorithms
• Dynamic Programming

Neural networks

• Architecture
o Single neuron processing
o Multi-layer neural

networks
• Tasks

o Classification
o Regression (function approximation)

• Learning (supervised)
o The system has the correct (expected)

answer and can improve its estimate and
take decisions

Page | 6

Neural networks

• Learning (unsupervised)
o The system doesn’t have the correct (expected) answer, yet such a

system can:
 learn the underlying structure of the data

• extract
underlying clusters

• reconstruct distorted patterns after previously learning them

Radial Basis Functions

Radial basis functions can take complex forms (e.g. Gaussian - real valued functions
whose output depends on the distance from a particular point) and usually used for
function approximation.

Page | 7

Fuzzy systems

How does human perception work?

The characteristics of human's answer
will be:

• Imprecise / vague
• Involving modifier/hedge of

linguistic term (quite, fairly, too,
very, etc.)

• Implies uncertainty

Fuzzy logic is based on uncertain reasoning using linguistic terms and rules based on
human-like reasoning: IF x THEN y.

Evolutionary algorithms

Mimic biological evolution and its mechanisms for combining genetic material towards
survival of the fittest. Used in optimization problems for which little is known about the
underlying function.

Reinforcement Learning

Studies how agents ought to take actions in an environment so as to maximize some
notion of cumulative reward.

Page | 8

Statistical Learning

Framework for machine learning drawing from the fields of statistics and functional
analysis dealing with the problem of finding a predictive function based on data.

Assumes collecting large amounts of data to recognize complex patterns, e.g.
classification using Support Vector Machines.

Page | 3

Contents
Lectures
1. Introduction to Artificial Intelligence and Machine Learning
2. Traditional computation

2.1. Sorting algorithms
2.2. Graph search algorithms

3. Supervised neural computation
3.1. Biological neurons vs. artificial neurons
3.2. Learning in artificial neurons
3.3. From single neurons to neural networks
3.4. Learning in neural networks: Error Backpropagation in Multi-Layer Neural Networks
3.5. Supervised learning: tips and tricks

4. Unsupervised neural computation
4.1. Introduction to unsupervised learning
4.2. Radial Basis Functions
4.3. Vector Quantization
4.4. Kohonen’s Self-Organizing-Maps
4.5. Hopfield Networks

5. Deep Neural Learning
5.1. Fundamentals of Deep Networks
5.2. Common Architectural Principles of Deep Networks
5.3. Building Blocks of Deep Networks.
5.4. Major Architectures of Deep Networks

6. Technical implementations of neural computation
6.1. Recurrent networks
6.2. Time-series prediction
6.3. Support Vector Machines
6.4. Liquid State Machines

7. Reinforcement Learning
7.1. Introduction to Reinforcement Learning
7.2. Q-Learning

8. Evolutionary programming
8.1. Introduction to evolutionary computing
8.2. Genetic Algorithms

9. Fuzzy Inference Systems
9.1. Introduction to Fuzzy Logic
9.2. Fuzzy control systems

10. Online distributed streaming machine learning
10.1. Machine Learning in Real-Time Big Data Analytics

11. Immunological Computation and Artificial Immune Systems
12. Neuromorphic Systems and Spiking Neural Networks

Page | 4

2. Traditional computation

A sorting algorithm is an algorithm that organizes elements of a sequence in a certain
order. Since the early days of computing, the sorting problem has been one of the
main battlefields for researchers. The basic metric usually used in the analysis of
algorithms is depicted in the following figure.

The reason behind this is not only the need of solving a very common task but also
the challenge of solving a complex problem in the most efficient way (in terms of
memory usage and time).

2.1 Sorting algorithms

Bubble sort

The bubble sort makes multiple passes through a list. It compares adjacent items and
exchanges those that are out of order. Each pass through the list places the next
largest value in its proper place. In essence, each item “bubbles” up to the location
where it belongs.

The basic process in depicted in the following figure. The shaded items are being
compared to see if they are out of order. It is important to note that once the largest
value in the list is part of a pair, it will continually be moved along until the pass is
complete.

Page | 5

Insertion sort

Insertion sort always maintains a sorted sublist in the lower positions of the list. Each
new item is then “inserted” back into the previous sublist such that the sorted sublist
is one item larger.

The basic process in depicted in the following figure. The shaded items represent the
ordered sublists as the algorithm makes each pass.

Page | 6

Merge sort

It is based on recursion and implements the Divide and Conquer strategy as a way to
improve the performance of sorting algorithms.

Merge sort is a recursive algorithm that continually splits a list in half. If the list is empty
or has one item, it is sorted by definition (the base case). If the list has more than one
item, we split the list and recursively invoke a merge sort on both halves. Once the two
halves are sorted, the fundamental operation, called a merge, is performed. Merging
is the process of taking two smaller sorted lists and combining them together into a
single, sorted, new list. The basic process in depicted in the following figure.

Divide

 Conquer

Page | 7

Comparison among sorting algorithms in terms of complexity

2.2 Graph search algorithms

Graphs and their formal definition

Graphs can be used to represent many interesting things about our world, including
systems of roads, airline flights from city to city, how the Internet is connected, or even
the sequence of classes you must take to complete a major in computer science.

In this section we will formally define a graph and its components.

Vertex

A vertex (also called a “node”) is a fundamental part of a graph. It can have a name,
which we will call the “key.” A vertex may also have additional information. We will call
this additional information the “payload.”

Edge

An edge (also called an “arc”) is another fundamental part of a graph. An edge
connects two vertices to show that there is a relationship between them. Edges may
be one-way or two-way. If the edges in a graph are all one-way, we say that the graph
is a directed graph, or a digraph. The class prerequisites graph shown above is clearly
a digraph since you must take some classes before others.

Page | 8

Weight

Edges may be weighted to show that there is a cost to go from one vertex to another.
For example in a graph of roads that connect one city to another, the weight on the
edge might represent the distance between the two cities.

Path

A path in a graph is a sequence of vertices that are connected by edges.

Cycle

A cycle in a directed graph is a path that starts and ends at the same vertex.

With those definitions in hand we can formally define a graph. A graph can be
represented by G where G = (V, E). For the graph G, V is a set of vertices and E is a
set of edges. Each edge is a tuple (v, w) where w, v ∈ V. We can add a third component
to the edge tuple to represent a weight. A subgraph s is a set of edges e and vertices
v such that e ⊂ E and v ⊂ V. A sample graph is shown in the following figure.

Representing graphs: Adjacency matrix

One of the easiest ways to implement a graph is to use a two-dimensional matrix. In
this matrix implementation, each of the rows and columns represent a vertex in the
graph. The value that is stored in the cell at the intersection of row v and column w
indicates if there is an edge from vertex v to vertex w. When two vertices are connected
by an edge, we say that they are adjacent. The adjacency matrix for the previously
introduced graph is depicted in the following diagram.

Page | 9

Representing graphs: Adjacency list

A more space-efficient way to implement a sparsely connected graph is to use an
adjacency list. In an adjacency list implementation we keep a master list of all the
vertices in the Graph object and then each vertex object in the graph maintains a list
of the other vertices that it is connected to. The adjacency list for the previously
introduced graph is shown in the following diagram.

The advantage of the adjacency list implementation is that it allows us to compactly
represent a sparse graph. The adjacency list also allows us to easily find all the links
that are directly connected to a particular vertex.

Page | 10

Algorithms on graphs

Graphs can be used to model many types of relations and processes in physical,
biological, social and information systems. Many practical problems can be
represented by graphs. One interesting problem is graphs search, or graph traversal.
It refers to the process of visiting (checking and/or updating) each vertex in a graph.
Such traversals are classified by the order in which the vertices are visited.

Breadth First Search (BFS)

Breadth first search (BFS) is one of the easiest algorithms for searching a graph. Given
a graph G and a starting vertex s, a breadth first search proceeds by exploring edges
in the graph to find all the vertices in G for which there is a path from s. The remarkable
thing about a breadth first search is that it finds all the vertices that are a distance k
from s before it finds any vertices that are a distance k+1. One good way to visualize
what the breadth first search algorithm does is to imagine that it is building a tree, one
level of the tree at a time. A breadth first search adds all children of the starting vertex
before it begins to discover any of the grandchildren.

To keep track of its progress, BFS colors each of the vertices white, gray, or black. All
the vertices are initialized to white when they are constructed. A white vertex is an
undiscovered vertex. When a vertex is initially discovered it is colored gray, and when
BFS has completely explored a vertex it is colored black. This means that once a
vertex is colored black, it has no white vertices adjacent to it. A gray node, on the other
hand, may have some white vertices adjacent to it, indicating that there are still
additional vertices to explore. The basic process in depicted in the following figure.

Depth First Search (DFS)

The goal of DFS is to search as deeply as possible, connecting as many nodes in the
graph as possible and branching where necessary. As with the breadth first search
our depth first search makes use of predecessor links to construct the tree. The

Page | 11

difference is that the DFS introduces the vertices at the beginning of the queue instead
of the end. The basic process in depicted in the following figure.

Dijkstra’s Algorithm

Dijkstra’s algorithm is an iterative algorithm that provides us with the shortest path from
one particular starting vertex to all other vertices in the graph. This algorithm extends
the previously introduced approaches by introduces a cost on each edge. The basic
process in depicted in the following figure.

A* algorithm

A* (pronounced "A - star") is one of the most popular methods for finding the shortest
path between two locations in a mapped area. A* was developed in 1968 to combine

Page | 12

heuristic approaches like Best-First-Search (BFS) and formal approaches like
Dijsktra's algorithm.

It uses a cost function, the sum of the path cost and a heuristic, such as Cartesian
distance to goal. This algorithm will guide the search and will not explore the entire
solution space as Dijkstra’s.

Page | 3

Contents
Lectures
1. Introduction to Artificial Intelligence and Machine Learning
2. Traditional computation

2.1. Sorting algorithms
2.2. Graph search algorithms

3. Supervised neural computation
3.1. Biological neurons vs. artificial neurons
3.2. Learning in artificial neurons
3.3. From single neurons to neural networks
3.4. Learning in neural networks: Error Backpropagation in Multi-Layer Neural Networks
3.5. Supervised learning: tips and tricks

4. Unsupervised neural computation
4.1. Introduction to unsupervised learning
4.2. Radial Basis Functions
4.3. Vector Quantization
4.4. Kohonen’s Self-Organizing-Maps
4.5. Hopfield Networks

5. Deep Neural Learning
5.1. Fundamentals of Deep Networks
5.2. Common Architectural Principles of Deep Networks
5.3. Building Blocks of Deep Networks.
5.4. Major Architectures of Deep Networks

6. Technical implementations of neural computation
6.1. Recurrent networks
6.2. Time-series prediction
6.3. Support Vector Machines
6.4. Liquid State Machines

7. Reinforcement Learning
7.1. Introduction to Reinforcement Learning
7.2. Q-Learning

8. Evolutionary programming
8.1. Introduction to evolutionary computing
8.2. Genetic Algorithms

9. Fuzzy Inference Systems
9.1. Introduction to Fuzzy Logic
9.2. Fuzzy control systems

10. Online distributed streaming machine learning
10.1. Machine Learning in Real-Time Big Data Analytics

11. Immunological Computation and Artificial Immune Systems
12. Neuromorphic Systems and Spiking Neural Networks

Page | 4

3. Supervised neural computation

3.1 Biological neurons vs. artificial neurons
Neural networks have a remarkable ability to extract meaning from complex,
imprecise, and often noisy data. They are able to learn patterns and trends
governing the data which are typically not visible to humans. This is due to their ability
to generalize and to respond to unexpected inputs/patterns.

The brain is a highly complex, nonlinear, and parallel computer (information-
processing system). It has the capability to organize its structural constituents, known
as neurons, so as to perform certain computations (e.g., pattern recognition,
perception, and motor control) many times more efficient than the fastest digital
computer in existence today. On short timescales, one can conceive of a single
neuron as a computational device that maps inputs at its synapses into a sequence
of action potentials or spikes.

A biological neuron and its physiological properties (e.g. membrane voltage)

What type of computation happens inside a cell?

Input signal (i.e. stimulus)

Cell membrane voltage changes

Output (i.e. spike / action potential)

Page | 5

An artificial neuron emulates the process of collecting input signals (i.e. pre-
synaptic spikes) and providing an output after reaching a threshold (i.e. post-
synaptic spike).

The net input of the neuron is given by

𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑝𝑝𝑖𝑖𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 𝑝𝑝1𝑤𝑤1 + 𝑝𝑝2𝑤𝑤2 + ⋯+ 𝑝𝑝𝑛𝑛𝑤𝑤𝑛𝑛

whereas the output of the neuron is computed as

𝑜𝑜𝑜𝑜𝑛𝑛 = 𝑓𝑓(𝑛𝑛𝑛𝑛𝑛𝑛 − 𝜃𝜃)

Although the history of the artificial neural networks stems from the 1940s, the decade
of the first electronic computer, the first significant step took place in 1958, when
Rosenblatt introduced the first concrete neural model, the perceptron.

Page | 6

An artificial neuron performs a (nonlinear) mapping from input to output, typically
from a high-dimensional input space to a low-dimensional (often one-
dimensional) output space.

Mathematically, the computation described by an artificial neuron describes the
calculation of a weighted sum of its inputs and the application of an activation
(squashing) function that determines the output of the neuron.

In most cases the activation functions are monotonically increasing functions
with different effects on the output of the neuron.

What can an “artificial neuron” compute?

A two-input perceptron with one neuron which has a “step” activation function is
capable to separate / classify input patterns (e.g. in the simplest case group inputs
in classes, <0 or ≥0). Such a classification implies a decision / separation
boundary, which is determined by the input vectors for which the net input is zero.

Page | 7

Considering linearly separable classes a single neuron perceptron can implement
problems emulating logic gates, such as AND and OR functions.

In order to construct linear decision boundaries that explicitly try to separate the
data into different classes as well as possible, we need to train the system by
updating the weights (both for inputs and the bias). In other words, the system
needs to find a separating hyperplane by minimizing the distance of misclassified
points to the decision boundary.

3.2 Learning in artificial neurons
The training process is based on the Gradient Descent Learning Rule, which
assumes minimizing an error function of the mismatch between the target and
the actual output of the neuron.

The actual error metric is given by

𝐸𝐸(𝑛𝑛) = ��𝑛𝑛𝑝𝑝(𝑛𝑛) − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝(𝑛𝑛)�
2

𝑃𝑃𝑇𝑇

𝑝𝑝=1

,

where tp is the target value for pattern p, and outp is the currently computed neuron
output for input pattern p from the training set. The error metric is squared, such that
all errors are positive and large errors are stronger penalized compared to small errors.

For every single training pattern, weight update uses this rule to follow the negative
Gradient in weight space; i.e. ultimately go to the position in weight space with smallest
output error.

Page | 8

𝑤𝑤𝑖𝑖(𝑛𝑛) = 𝑤𝑤𝑖𝑖(𝑛𝑛 − 1) + ∆𝑤𝑤𝑖𝑖(𝑛𝑛)

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = 𝜂𝜂 �
−𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑖𝑖(𝑛𝑛)

�

If the classes are linearly separable, the algorithm converges to a separating
hyperplane in a finite number of steps.

What does learning mean? Basically, a learning process assumes fitting a model to
data. In the context of neural computation, the model is the neuron or the neural
network, and the fitting process assumes the update of weights.

In order to understand this basic process, we provide a simple example that uses the
dependency between the weight and the height of a group of people as training data.
The neural system should be able to extract such a mapping from the data.

How do future (currently unknown) data points fit? What is the mapping between the
weight and the height? There are several possible “models” (multiple lines) that can fit
the data; each characterized by a slope (SL) and an intercept (IC).

In these terms we need to define a metric that decides how good or how bad our
particular choice of the model is. A typical error function is the sum squared error
between the true value and the output (as explained above):

𝐸𝐸𝐸𝐸𝐸𝐸 = � �𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛𝑝𝑝 − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝�
2

𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝

Finding the “best” combination of SL and IC minimizes the “error” of the model.

Page | 9

How do we achieve this? In order to guide the search for the suitable parameters
Gradient Descent is used:

1. Pick random initial values for IC/SL (e.g. x0)
2. Calculate the gradient with respect to each model

parameter (i.e. IC,SL)
3. Update the parameters in the direction of the negative

gradient
4. Repeat 2 and 3 until convergence (e.g. x1...4)

How does the process of gradient descent relate to neurons?

As previously shown a neuron integrates the available input, inpi, weighting each
contribution, wi.

𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑝𝑝𝑖𝑖𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

For the previous example, we assume only one quantity as input (e.g. height) and
predict the other quantity (e.g. weight) as output. The “linear neuron” adapts its two
“internal weights” (w1 connected to input height; and w2 to bias input), such that w1
and w2 become the unknown value IC and SL that characterize the line which
approximates the data.

This simple example can be formalized to a learning rule in a single neuron.

We define the error signal for the entire dataset, E, and compute the error for each
single training example, Ep, using the current set of weights wi:

Page | 10

𝐸𝐸 = � �𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛𝑝𝑝 − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝�
2

𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝

→ 𝐸𝐸𝑝𝑝 = �𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛𝑝𝑝 − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝�
2

Given the error signal, we compute the gradient (derivative) with respect to the input
weights of a linear neuron (i.e. here for simplicity the activation function is linear)

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = 𝜂𝜂𝐺𝐺𝑖𝑖(𝑛𝑛), with 𝐺𝐺𝑖𝑖(𝑛𝑛) = 𝜕𝜕𝐸𝐸𝑝𝑝(𝑝𝑝)
𝜕𝜕𝑤𝑤𝑖𝑖(𝑝𝑝),

which we can rewrite as (chain rule)

𝐺𝐺𝑖𝑖(𝑛𝑛) = 𝜕𝜕𝐸𝐸𝑝𝑝(𝑝𝑝)
𝜕𝜕𝑤𝑤𝑖𝑖(𝑝𝑝) = 𝜕𝜕𝐸𝐸𝑝𝑝(𝑝𝑝)

𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝(𝑝𝑝) ∙
𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝(𝑝𝑝)
𝜕𝜕𝑤𝑤𝑖𝑖(𝑝𝑝) with 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝(𝑛𝑛) = ∑ 𝑝𝑝𝑖𝑖(𝑛𝑛) ∙ 𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1 (𝑛𝑛)

Analyzing both factors individually yields

(1) 𝜕𝜕𝐸𝐸𝑝𝑝(𝑝𝑝)
𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝(𝑝𝑝) = 𝜕𝜕�𝑝𝑝𝑡𝑡𝑜𝑜𝑡𝑡𝑝𝑝−𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝�

2

𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝(𝑝𝑝) = 2 ∙ �𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛𝑝𝑝 − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝� ∙ (−1) = −2 ∙ �𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛𝑝𝑝 − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝�

and

(2) 𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝(𝑝𝑝)
𝜕𝜕𝑤𝑤𝑖𝑖(𝑝𝑝) =

𝜕𝜕∑ 𝑝𝑝𝑗𝑗(𝑝𝑝)∙𝑤𝑤𝑗𝑗𝑗𝑗=1 (𝑝𝑝)

𝜕𝜕𝑤𝑤𝑖𝑖(𝑝𝑝) = 𝑝𝑝𝑖𝑖 (only for j=i the derivative exists)

Combined, the gradient in the direction of the weight wi is given by

𝐺𝐺𝑖𝑖(𝑛𝑛) =
𝜕𝜕𝐸𝐸𝑝𝑝(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑖𝑖(𝑛𝑛)

=
𝜕𝜕𝐸𝐸𝑝𝑝(𝑛𝑛)
𝜕𝜕𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝(𝑛𝑛)

∙
𝜕𝜕𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑖𝑖(𝑛𝑛)

= −2 ∙ �𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛𝑝𝑝 − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝� ∙∈ 𝑝𝑝𝑖𝑖

and we can use this to adapt weights, such that the error value is minimized.

This approach holds also for neurons with non-linear activation functions, as long
as this activation function is differentiable.

3.3 From single neurons to neural networks
So far we introduced a simple neuron that can adapt to available data; if and only if
the distribution of data matches its activation function (linear in the example above).
The advanced goal is to learn “arbitrary” data, not just such that happens to fit the
given neuron transfer function. This we achieve by combining multiple neurons in a
neural network using feed forward connectivity between the neuron layers. In such
a structure each neuron represents some aspect of the data and the neurons higher
up in the hierarchy combine these.

Page | 11

The manner in which the neurons of a neural network are structured is intimately linked
with the learning algorithm used to train the network. In a layered neural network,
the neurons are organized in the form of layers. The simplest form of a layered network
has an input layer of (external) source nodes that projects directly to an output layer
of neurons (computational nodes), but not vice versa. This network is strictly
feedforward! More complex feedforward neural networks additionally contain one or
more hidden layers, whose computational nodes are correspondingly called hidden
neurons or hidden units; the term “hidden” refers to the fact that this part of the neural
network is not seen directly from either the input or the output of the network. Another
class of network structures are recurrent neural networks with at least one feedback
loop; we will analyze them when introducing unsupervised learning algorithms
(Chapter 4).

3.4 Learning in neural networks:
Error Backpropagation in Multi-Layer Neural Networks

We have shown a method to train weights for a single neuron in chapter 3.2 which
uses the desired output for weight updates. This method does not directly work in
neuronal networks, as we don’t know what neurons in the hidden layers should do.
We do know the network’s desired final output (i.e. the training data output value); but
it is completely unclear what neurons inside the network should compute to finally
reach that output. Therefore we cannot use the learning rule from 3.2, but instead
backward propagate the learning error from output towards input, depending on
activity of neurons. This idea is called “error backpropagation algorithm”.

The error backpropagation algorithm was originally introduced in the 1970s, but its
importance wasn't fully appreciated until a famous paper published 1986 by David
Rumelhart, Geoffrey Hinton, and Ronald Williams. The backpropagation algorithm
searches the minimum of the error function in weight space, using gradient
descent. The particular combination of weights which minimizes the error function is
considered to be the solution for learning a representation of data. Since this method
requires computation of the gradient of the error function at each iteration step, we
must guarantee continuity and differentiability of the error function.

Page | 12

The goal of backpropagation is to compute the partial derivatives of the cost function
with respect to any weights in the network. In order to introduce the formalism of
backpropagation we introduce the following notations:

1. Definitions
(1) The error signal for a certain unit i at training time t is given by:

𝛿𝛿𝑖𝑖(𝑛𝑛) =
−𝜕𝜕𝐸𝐸𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)

where the net input to neuron i is

𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛) = �𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛) ∙ 𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛)
𝑖𝑖∈𝐴𝐴

(2) The weight change for weight wik is given by

∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛) =
−𝜕𝜕𝐸𝐸𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛)

2. Understanding the gradient for weight change

Starting from the weight change at the neuron level we can infer the representation of
the update in terms of the output of the previous layer and the error at the current
neuron:

∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛) =
−𝜕𝜕𝐸𝐸𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛)

=
−𝜕𝜕𝐸𝐸𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)

∙
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛)

= 𝛿𝛿𝑖𝑖(𝑛𝑛)𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛)

with the error signal for node i computed as

Page | 13

−𝜕𝜕𝐸𝐸𝑖𝑖(𝑝𝑝)
𝜕𝜕𝑛𝑛𝑡𝑡𝑝𝑝𝑖𝑖(𝑝𝑝) = 𝛿𝛿𝑖𝑖(𝑛𝑛) (by definition (1))

𝜕𝜕𝑛𝑛𝑡𝑡𝑝𝑝𝑖𝑖(𝑝𝑝)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) = 𝜕𝜕∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝)∙𝑝𝑝𝑜𝑜𝑝𝑝𝑖𝑖(𝑝𝑝)𝑖𝑖∈𝐴𝐴𝑖𝑖

𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) = 𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛) (non-zero only for l=k)

3. Forward activation of the network

In this phase the “input” is applied to the bottom layer, and we compute all neurons’
outputs layer by layer towards the target output:

𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛) = 𝑓𝑓𝑖𝑖�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)� = 𝑓𝑓𝑖𝑖 ��𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛) ∙ 𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛)
𝑖𝑖∈𝐴𝐴

�

4. Calculating the error of the output neuron

For the final output the dataset contains a desired value, targeto, hence we can
compute the error signal at the network output, outo, (similar to chapter 3.2):

𝛿𝛿𝑝𝑝(𝑛𝑛) =
−𝜕𝜕𝐸𝐸𝑝𝑝(𝑛𝑛)
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝(𝑛𝑛)

= 2 ∙ (𝑛𝑛𝑡𝑡𝐸𝐸𝑡𝑡𝑛𝑛𝑛𝑛𝑝𝑝 − 𝑜𝑜𝑜𝑜𝑛𝑛𝑝𝑝)

Note that for simplicity we assume a linear output unit (without loss of generality).

5. Propagating the error back through the network

After computing the error at the network output we propagate the error signal back
through the network (hence the name of the learning mechanism).

𝛿𝛿𝑖𝑖(𝑛𝑛) =
−𝜕𝜕𝐸𝐸𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)

Applying the Chain Rule:

𝛿𝛿𝑖𝑖(𝑛𝑛) =
𝜕𝜕𝐸𝐸𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)

= �
−𝜕𝜕𝐸𝐸𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗(𝑛𝑛)

∙
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗(𝑛𝑛)
𝜕𝜕𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛)

∙
𝜕𝜕𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛)
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)𝑗𝑗∈𝑃𝑃

Where

(1) −𝜕𝜕𝐸𝐸𝑖𝑖(𝑝𝑝)
𝜕𝜕𝑛𝑛𝑡𝑡𝑝𝑝𝑗𝑗(𝑝𝑝) = 𝛿𝛿𝑗𝑗(𝑛𝑛) (by definition (1))

(2) 𝜕𝜕𝑛𝑛𝑡𝑡𝑝𝑝𝑗𝑗(𝑝𝑝)
𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑖𝑖(𝑝𝑝) = 𝜕𝜕∑ 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)∙𝑝𝑝𝑜𝑜𝑝𝑝𝑗𝑗(𝑝𝑝)𝑗𝑗∈𝑃𝑃

𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑖𝑖(𝑝𝑝) = 𝑤𝑤𝑗𝑗𝑖𝑖 (only nonzero for m=i)

(3) 𝜕𝜕𝑝𝑝𝑜𝑜𝑝𝑝𝑖𝑖(𝑝𝑝)

𝜕𝜕𝑛𝑛𝑡𝑡𝑝𝑝𝑖𝑖(𝑝𝑝) = 𝜕𝜕𝜕𝜕�𝑛𝑛𝑡𝑡𝑝𝑝𝑖𝑖(𝑝𝑝)�
𝜕𝜕𝑛𝑛𝑡𝑡𝑝𝑝𝑖𝑖(𝑝𝑝) = 𝑓𝑓′�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)�

Page | 14

Combining those three equations we compute the error signal for a neuron i in the
network:

𝛿𝛿𝑖𝑖(𝑛𝑛) = �𝛿𝛿𝑗𝑗(𝑛𝑛) ∙ 𝑤𝑤𝑗𝑗𝑖𝑖(𝑛𝑛) ∙ 𝑓𝑓′�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)�
𝑗𝑗∈𝑃𝑃

and given the activation function f is independent of the jth node, we can rewrite the
error:

𝛿𝛿𝑖𝑖(𝑛𝑛) = 𝑓𝑓′�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)� ∙�𝛿𝛿𝑗𝑗(𝑛𝑛) ∙ 𝑤𝑤𝑗𝑗𝑖𝑖(𝑛𝑛)
𝑗𝑗∈𝑃𝑃

 We observe that the error for neuron i (𝛿𝛿𝑖𝑖) only depends on the known error
of neurons in “higher” levels j of the network hierarchy (𝛿𝛿𝑗𝑗).

6. Computing the weight update for weight anterior to posterior (k  i)

Computing the weight update using the weight increment and the error signal

∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛) = 𝛿𝛿𝑖𝑖(𝑛𝑛) ∙ 𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛) 𝛿𝛿𝑖𝑖(𝑛𝑛) = 𝑓𝑓′�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)� ∙ ∑ 𝛿𝛿𝑗𝑗(𝑛𝑛) ∙ 𝑤𝑤𝑗𝑗𝑖𝑖(𝑛𝑛)𝑗𝑗∈𝑃𝑃

The final weight update is

∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛) = 𝑓𝑓′�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)� ∙�𝛿𝛿𝑗𝑗(𝑛𝑛) ∙ 𝑤𝑤𝑗𝑗𝑖𝑖(𝑛𝑛) ∙
𝑗𝑗∈𝑃𝑃

𝑓𝑓�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)�

or

∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛) = 𝑓𝑓′�𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖(𝑛𝑛)� ∙�𝛿𝛿𝑗𝑗(𝑛𝑛) ∙ 𝑤𝑤𝑗𝑗𝑖𝑖(𝑛𝑛) ∙
𝑗𝑗∈𝑃𝑃

𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖(𝑛𝑛)

This update rule allows training of feedforward multilayer neural networks, for tasks
such as regression (function approximation) and classification.

3.5 Supervised learning: tips and tricks
The main problem in using artificial neural networks is parameter tuning, because
there is no definite and explicit method to select optimal values for the network
parameters. In this section we will discuss design choices regarding data pre-
processing, weight initialization, and error functions.

Page | 15

1. Weight initialization

A possible option is to set all the initial weights to zero (or any other constant). This
is a fatal mistake, because if every neuron in the network computes the same
output, they will also all learn based on identical gradients during error-
backpropagation and undergo the exact same parameter updates. In other words,
there is no source of asymmetry between neurons if their weights are initialized the
same; they all act as they are a single (highly redundant) neuron.

A common method to break symmetry early on is to initialize all neurons’ weights
to small random numbers. Thereby, neurons all behave uniquely, so they will
compute distinct updates and develop into diverse contributors of the full network.

Use small weights, as small weights are likely to get the net input into the steep
region of the neurons’ transfer functions. The gradient will initially be large, so
neurons quickly differentiate.

Tip: initialize the weight with small random numbers, e.g. -0.001…0.001

2. Input/Output normalization

Normalization refers to normalizing each of the data dimensions so that they are
all on approximately similar scale. There are two common ways of achieving this
normalization. One is to divide each dimension by its standard deviation, once it
has been zero-centered. Another form of this preprocessing normalizes each
dimension so that the min and max along the dimension is -1 and 1 respectively.

Tip: use a linear (final) output neuron transfer, and normalize all input data
to [-1 .. +1].

3. Small weight updates

Weight updates are controlled by a parameter, η(t), the learning rate, which
determines how fast the weight change will take place. At every update only a
single data point is processed; hence a “full update” will match this point well but
neglect others. The learning rate allows small updates towards consecutive
examples, which improves overall network behavior. The learning rate should
typically be very small.

Tip: use a constant small learning rate, e.g. η(t)=0.001

4. Avoiding local minima in weight space

In training neural networks (as in any local gradient based method) the training
might get stuck in local minima, instead of finding a global minimum. A technique
called Simulated Annealing might help to overcome local minima but regularly

Page | 16

perturbing the current set of weight. This perturbation (“shaking”) shall initially be
large and decay with training success, so that initially the network likely “jumps” out
of local minima; but later likely stays within a found solution.

Tip: use small occasional random perturbation (“shaking”) of weights to
escape local minima.

5. Network size

Number of Input channels and output channels given by problem data set (this we
cannot decide, but it is given by the problem to be solved).

The important metric for the design of neural networks are the number of neurons,
or more precise the number of free parameters. How do we decide on what
architecture to use when faced with a practical problem? How many layers? How
many neurons per layer? First, note that as we increase the size and number of
layers in a neural network, the capacity of the network increases. That is, the
space of representable functions grows, since the neurons can collaborate to
express many different functions. But there is no theory yet to tell the designer
how many hidden units are needed to approximate any given function.

Some sources and articles offer "rules of thumb" for choosing size and topology
of a neural network:

• "A rule of thumb is for the size of this [hidden] layer to be somewhere
between the input layer size ... and the output layer size ..." (Blum,
1992, p. 60).

• "you will never require more than twice the number of hidden units as you
have inputs" in an MLP with one hidden layer (Swingler, 1996, p. 53)

• "How large should the hidden layer be? One rule of thumb is that it should
never be more than twice as large as the input layer." (Berry and Linoff,
1997, p. 323)

Tip: use small “fan-out” after input layer (a few more neurons than input
signals; at most 2x) and slowly reduce neurons to required output size.

6. Overtraining/overfitting

The final and often most critical issue in developing a neural network is
generalization: how well will the network make predictions for cases that are not
shown in the training set? Artificial neural networks can suffer from either
underfitting or overfitting.

Page | 17

A network that is not sufficiently complex can fail to fully detect the underlying signal
in a data set, leading to underfitting. A network that is too complex may fit the noise
(beyond fitting the signal), which causes overfitting. Overfitting is especially
dangerous because it can easily cause terrible predictions will within the range of
the training data (see how the prediction differs e.g. for -0.44 input).

The best way to avoid overfitting is to use large amounts of training data. Given
a fixed amount of training data, there are several approaches to avoiding
underfitting and overfitting, and hence improve generalization: model selection,
jittering, weight decay, Bayesian learning, combining networks, and – most
commonly used - Early stopping.

Early stopping

While training on data, the network seems to get better and better, i.e., the error
on the training set decreases. The network learns to represent every single data
point as good as possible, which ultimately results in a lookup table. We would like
to find the time of training when the generalization ends and learning of individual
data points begins.

For this, all available data is divided into two subsets, where 70% of all data
samples are used for training, and 30% of all data samples are used for
independent testing. The first subset – the training set –is used for computing the
gradient and updating the network weights and biases as before. The second
subset is the testing set, which is never used to train/update any weights. This
testing set is only used to compute remaining error of the network performance
given the current training state. Note that we can compute the error, as we know
input patter and desired output for the test data samples. The error on the testing
set (called “validation error”) is monitored during the training process.

Page | 18

The validation error normally decreases during the initial phase of training, as does
the training set error. However, when the network begins to overfit the data, the
error on the validation set typically begins to rise. At this point in time the network
achieves best generalization abilities and learning needs to stop (“early stopping”).
Any further training will only lead to fitting individual data-point (see overfitting
above), which reduces generalization abilities.

Page | 3

Contents
Lectures
1. Introduction to Artificial Intelligence and Machine Learning
2. Traditional computation

2.1. Sorting algorithms
2.2. Graph search algorithms

3. Supervised neural computation
3.1. Biological neurons vs. artificial neurons
3.2. Learning in artificial neurons
3.3. From single neurons to neural networks
3.4. Learning in neural networks: Error Backpropagation in Multi-Layer Neural Networks
3.5. Supervised learning: tips and tricks

4. Unsupervised neural computation
4.1. Introduction to unsupervised learning
4.2. Radial Basis Functions
4.3. Vector Quantization
4.4. Kohonen’s Self-Organizing-Maps
4.5. Hopfield Networks

5. Deep Neural Learning
5.1. Fundamentals of Deep Networks
5.2. Common Architectural Principles of Deep Networks
5.3. Building Blocks of Deep Networks.
5.4. Major Architectures of Deep Networks

6. Technical implementations of neural computation
6.1. Recurrent networks
6.2. Time-series prediction
6.3. Support Vector Machines
6.4. Liquid State Machines

7. Reinforcement Learning
7.1. Introduction to Reinforcement Learning
7.2. Q-Learning

8. Evolutionary programming
8.1. Introduction to evolutionary computing
8.2. Genetic Algorithms

9. Fuzzy Inference Systems
9.1. Introduction to Fuzzy Logic
9.2. Fuzzy control systems

10. Online distributed streaming machine learning
10.1. Machine Learning in Real-Time Big Data Analytics

11. Immunological Computation and Artificial Immune Systems
12. Neuromorphic Systems and Spiking Neural Networks

Page | 4

4. Unsupervised neural computation

4.1. Introduction to unsupervised learning

Just as there are different ways in which we ourselves learn from our own surrounding
environments, so it is with neural networks. In a broad sense, we may categorize the
learning processes through which neural networks function as follows: learning with
a teacher and learning without a teacher. These different forms of learning as
performed on neural networks parallel those of human learning.

Learning with a teacher is also referred to as supervised learning. In conceptual
terms, we may think of the teacher as having knowledge of the environment, with that
knowledge being represented by a set of input - output examples.

Unsupervised learning does not require target vectors for the outputs. Without input-
output training pairs as external teachers, unsupervised learning is self-organized to
produce consistent output vectors by modifying weights. That is to say, there are no
labelled examples of the function to be learned by the network.

For a specific task-independent measure, once the network has become tuned to the
statistical regularities of the input data, the network develops the ability to discover
internal structure for encoding features of the input or compress the input data,
and thereby to create new classes automatically.

In many problems, such as data compression or dimensionality reduction, the
measured data vectors are high-dimensional but we may have reason to believe that
the data lie near a lower-dimensional manifold. Learning a suitable low-
dimensional manifold from high-dimensional data is essentially the same as
learning this underlying source. Dimensionality reduction can also be seen as the
process of deriving a set of degrees of freedom which can be used to reproduce
most of the variability of a data set.

Principal components analysis (PCA) is a classical method that provides a
sequence of best linear approximations to a given high-dimensional observation.
It is one of the most popular techniques for dimensionality reduction. However, its

Page | 5

effectiveness is limited by its global linearity. Unfortunately, in dealing with large
datasets, PCA can become unmanageable in computational terms.

Is there a way to overcome this computational limitation? Can PCA be realized in a
neural network using an unsupervised learning algorithm?

Nonlinear principal component analysis (NLPCA) is commonly seen as a nonlinear
generalization of standard principal component analysis (PCA). It generalizes the
principal components from straight lines to curves (nonlinear).

Thus, the subspace in the original data space which is described by all nonlinear
components is also curved. Nonlinear PCA can be achieved by using a neural
network with an auto-associative architecture also known as autoencoder.

Such auto-associative neural network is a multi-layer perceptron that performs an
identity mapping, meaning that the output of the network is required to be identical to
the input. However, in the middle of the network is a layer that works as a bottleneck
in which a reduction of the dimension of the data is enforced. This bottleneck-layer
provides the desired component values.

In such a network the inputs (i.e. x1, x2, x3) are identical to the desired outputs (i.e. x1’,
x2’, x3’). The network implements a “mapping to itself”. In such a structure if the
number of hidden units is small the network needs to find and “efficient”
representation.

If the neuron in the center of the network is constrained to a linear transfer
function it will find the direction of the first principle component (i.e. the direction
in which the data shows the largest variance).

Such neural networks can be used in information processing fields such as pattern
recognition and data compression, such as face recognition or speech recognition.
For example, consider a set of images produced by the rotation of a face through
different angles. Clearly only one degree of freedom is being altered, and thus the
images lie along a continuous one dimensional curve through image space.

Page | 6

In another example, for facial recognition, it has been proven that using a locally linear
algorithm for nonlinear dimension reduction in an auto-associative network, one can
get more precise recognition.

4.2. Radial Basis Functions

In solving a nonlinearly separable pattern-classification problem, there is usually
practical benefit to be gained by mapping the input space into a new space of high
enough dimension. Basically, a nonlinear mapping is used to transform a nonlinearly
separable classification problem into a linearly separable one with high probability.
The Radial Basis Functions (RBF) technique consists in selecting such a mapping
function, F:

𝑓𝑓(𝑥𝑥) = �𝑤𝑤𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝜙𝜙(‖𝑥𝑥 − 𝑐𝑐𝑖𝑖‖),

where {𝜙𝜙(‖𝑥𝑥 − 𝑥𝑥𝑖𝑖‖)| 𝑖𝑖 = 1,2, … ,𝑁𝑁} is the set of N arbitrary (generally nonlinear)
functions known as radial-basis functions, ci is the i-th center, and ‖ . ‖ denotes a
distance metric, usually the Euclidian distance. Typical choices for radial basis
functions are:

Page | 7

• Spline functions,

𝜙𝜙(𝑥𝑥) = 𝑥𝑥2𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥

• Gaussian functions,

𝜙𝜙(𝑥𝑥) = 𝑒𝑒
−𝑥𝑥2
𝛽𝛽

• Multi-quadratic functions,

𝜙𝜙(𝑥𝑥) = �(𝑥𝑥2 + 𝛽𝛽2)

• Inverse multi-quadratic function,

𝜙𝜙(𝑥𝑥) =
1

�(𝑥𝑥2 + 𝛽𝛽2)

It has been proved that a RBF network (RBN) can approximate well any arbitrarily
continuous function if a sufficient number of radial-basis function units are given (the
network structure is large enough), and the network parameters are carefully chosen.
RBN also has the best approximation property in the sense of having the minimum
distance from any given function under approximation.

In a simplified perspective, a RBN is basically approximating the input data through a
linear combination of the k Gaussians 𝛷𝛷𝑘𝑘 with centers ck. The Gaussian “activation” is
determined, as previously mentioned, by the Euclidian distance of an input point to the
Gaussian center. This process, allows the projection of the input in a higher dimension
where classification / prediction is easier.

There are two main problems related to parameterizing such learning systems: 1)
determining the parameters for the RBFs (i.e. ck , σk); 2) determining the weights of
the network, wk (i.e. can be performed using Backpropagation).

For the first problem, at design time, a narrow variance Gaussian per data sample is
considered. Subsequently, the number of Gaussian is reduced to allow interpolation
of the input space. But, how well is data represented by a single Gaussian? This

Page | 8

question opens a new interpretation of the Gaussian hidden units of RBNs. In a
neurobiological context, the Gaussians correspond to sensory receptive fields. Such
a receptive field is defined as “the region of a sensory field from which an adequate
sensory stimulus will elicit a response”. In RBN terminology, the receptive field of a
hidden unit is that region of the input layer of source nodes from which an adequate
pattern will elicit a response.

This definition applies equally well to multilayer perceptrons (MLPs) and RBNs.
Summarizing the main aspects we can analyze comparatively MLPs and RBFs:

 RBFs MLPs

Hidden units

𝑓𝑓(‖𝑥𝑥 − 𝑐𝑐𝑖𝑖‖)

Decreasing with increasing
distance (“localized)

𝑓𝑓(�𝑤𝑤𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖)

Usually nonlinear,
monotonically increasing

Output

Only a few active
contributors

Many contributors

Most “hidden” neurons are
active

Problems with local minima

Network topology

Simple 3-layer structure Many structures possible
dependent on problem

Training

2-stage process:

1. Finding Gaussian params

2. Training weights

All weights are
simultaneously adapted
through backpropagation

4.3. Vector Quantization

In neurobiology, during neural growth, synapses are strengthened or weakened, in a
process usually modelled as a competition for resources. In such a learning process,
there is a competition between the neurons to fire. More precisely, neurons compete
with each other (in accordance with a learning rule) for the “opportunity” to respond to
features contained in the input data. In its simplest form, such behaviour describes a
“winner-takes-all” strategy. In such a strategy, the neuron with the greatest total input
“wins” the competition and turns on; all the other neurons in the network then switch
off. The aim of such learning mechanisms is to cluster the data.

In a typical scenario, such behavior can be implemented with a neural network that
consists of two layers—an input layer and a competitive layer with lateral

Page | 9

inhibition. The input layer receives the available data. The competitive layer consists
of neurons that compete with each other.

The basic mechanism of competitive learning is to find a winning unit and update its
weights to make it more likely to win in future if a similar input will be given to the
network.

Vector quantization (VQ) is a form of competitive learning. Such an algorithm is able
to discover structure in the input data. Generally speaking, vector quantization is a
form of lossy data compression—lossy in the sense that some information contained
in the input data is lost as a result of the compression.

An input data point belongs to a certain class if its position (in the 2D space) is closest
to the class prototype, fulfilling the Voronoi partitioning (i.e. partitioning of
a plane into regions based on distance to points in a specific subset of the plane.

Page | 10

Algorithm:

#1 Choose the number of clusters, M

#2 Initialize the prototypes w1, w2,…, wn (hint: pick random input samples but
distributed evenly in the input space)

#3 Repeat until “good enough”

 #4 Randomly pick an input x

 #5 Determine the winning prototype node k such that

|𝑤𝑤𝑘𝑘 − 𝑥𝑥| ≤ |𝑤𝑤𝑖𝑖 − 𝑥𝑥| for all nodes i

 #6 Update the winning prototype weights

𝑤𝑤𝑘𝑘(𝑡𝑡 + 1) = 𝑤𝑤𝑘𝑘(𝑡𝑡) + 𝜂𝜂(𝑥𝑥 − 𝑤𝑤𝑘𝑘(𝑡𝑡)), where 𝜂𝜂 is the learning rate.

4.4. Kohonen’s Self-Organizing-Maps

Kohonen’s self-organizing map (SOM) is one of the most popular unsupervised
neural network models. Developed for an associative memory model, it is an
unsupervised learning algorithm with a simple structure and computational form, and
is motivated by the retina-cortex mapping. The SOM can provide topologically
preserved mapping from input to output spaces, such that “nearby” sensory stimuli
are represented in “nearby” regions.

External stimuli are received by various sensors or receptive fields (for example,
visual-, auditory-, motor-, or somato-sensory), coded or abstracted by the living neural
networks, and projected through axons onto the cerebral cortex, often to distinct parts
of the cortex. In other words, the different areas of the cortex (cortical maps) often
correspond to different sensory inputs, though some brain functions require collective
responses.

These networks are based on competitive learning; the output neurons of the
network compete among themselves to be activated or fired, with the result that only
one output neuron, or one neuron per group, is on at any one time. An output neuron
that wins the competition is called a winner-takes-all neuron, or simply best matching
unit.

Page | 11

In a self-organizing map, the neurons are placed at the nodes of a lattice that is usually
one or two dimensional.

The neurons become selectively tuned to various input patterns (stimuli) or classes
of input patterns in the course of the competitive learning process. The locations of
the neurons so tuned (i.e., the winning neurons) become ordered with respect to each
other in such a way that a meaningful coordinate system for different input features is
created over the lattice. A self-organizing map is therefore characterized by the
formation of a topographic map of the input patterns, in which the spatial locations
(i.e., coordinates) of the neurons in the lattice are indicative of intrinsic statistical
features contained in the input patterns.

The SOM is an optimal VQ when the neighbourhood eventually shrinks to just the
winner, as it will satisfy the two necessary conditions for VQ (Voronoi partition and
centroid condition). The use of the neighbourhood function makes the SOM superior
to common VQs in two main respects. Firstly, the SOM is better at overcoming the
under- or over-utilization and local minima problem. The second is that the SOM will
produce a map with some ordering among the code vectors, and this gives the map
an ability to tolerate noise in the input or retrieval patterns.

Finally, once the network has become tuned to the statistical regularities of the input
data, the network develops the ability to form internal representations for
encoding features of the input and thereby to create new classes automatically.

Page | 12

Algorithm:

#1 Initialize all weights wij and define the neighborhood function 𝜙𝜙(𝑖𝑖, 𝑗𝑗)

#2 Select input x and determine the winning unit i such that

|𝑥𝑥 − 𝑤𝑤𝑘𝑘| ≤ �𝑥𝑥 − 𝑤𝑤𝑗𝑗� for all nodes 𝑗𝑗 ≠ 𝑖𝑖

#3 Update weights for all units j given the winner unit i

𝑤𝑤𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤𝑗𝑗(𝑡𝑡) + 𝜂𝜂𝜙𝜙(𝑗𝑗, 𝑖𝑖)(𝑥𝑥 − 𝑤𝑤𝑗𝑗(𝑡𝑡)), where 𝜂𝜂 is the learning rate

#4 Repeat from step #2 until convergence is reached and update 𝜂𝜂 and 𝜙𝜙

In a practical example such a 1D SOM network is able to cover uniformly a 2D input
space preserving the topology. This behavior holds also for higher dimensional output
spaces.

Tips and tricks:

• Choosing a neighborhood function 𝜙𝜙
o Typically functions which decrease influence with distance (e.g.

concentric squares, hexagons, and other polygonal shapes as well as
Gaussian functions)

o Neighborhood has to be large at the beginning (e.g. initial radius
initialized as half size of the net) and decrease in time to 1 (convergence)

• Learning rate 𝜂𝜂
o Function that decreases in time (e.g. inverse time, exponential, linear)

• Number of training steps
o For good accuracy the number of learning steps has to be high enough,

e.g. 500 times the number of SOM neurons

Page | 13

Typical problems:

• Mapping into 2D – weights in the middle of the 2D lattice do not get updated
similarly to the ones at the extremities and a “knot” appears

• Mapping into a too-low dimension (e.g. 3D cube into 2D – a dimension is lost)

The term self-organizing map signifies a class of mappings defined by error-theoretic
considerations. In practice they result in certain unsupervised, competitive learning
processes, computed by simple-looking SOM algorithms. Many industries have found the
SOM-based software tools useful. The most important property of the SOM, orderliness of
the input-output mapping, can be utilized for many tasks: reduction of the amount of training
data, speeding up learning nonlinear interpolation and extrapolation, generalization, and
effective compression of information for its transmission.

4.5. Hopfield Networks

Biological substrate

Donald Hebb hypothesized in 1949 how neurons are connected with each other in the
brain: “When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the cells firing B, is
increased.”, and postulated a new learning mechanism, Hebbian learning. In other
words neural networks stores and retrieves associations, which are learned as
synaptic connection. In Hebbian learning, both presynaptic and postsynaptic

Page | 14

neurons are involved. Human memory thus works in an associative or content-
addressable way.

Technical perspective

The basic Hopfield network consists of a set of neurons and a corresponding set of
unit-time delays, forming a multiple-loop feedback system. The model is a
recurrent neural network with fully interconnected neurons. The number of feedback
loops is equal to the number of neurons. Basically, the output of each neuron is fed
back, via a unit-time delay element, to each of the other neurons in the network. Such
a structure allows the network to recognise any of the learned patterns by exposure
to only partial or even some corrupted information about that pattern, i.e., it
eventually settles down and returns the closest pattern or the best guess.

In the Hopfield model it is assumed that the individual units preserve their individual
states until they are selected for a new update. The selection is made randomly. A
Hopfield network consists of n totally coupled units, that is, each unit is connected to
all other units except itself. The network is symmetric because the weight wij for the
connection between unit i and unit j is equal to the weight wji of the connection from
unit j to unit i. This can be interpreted as meaning that there is a single bidirectional
connection between both units. The absence of a connection from each unit to itself
avoids a permanent feedback of its own state value. Below three neurons i = 1, 2, 3
with values xi = ±1 have connectivity wij; any update has input xi and output yi:

.

Page | 15

Update rule:

The Hopfield network may be operated in a continuous mode or a discrete mode,
depending on the used neuron model.

In the application of the Hopfield network as a content-addressable memory, we
know a priori the fixed points (attractors) of the network in that they correspond to
the patterns to be stored. However, the synaptic weights of the network that produce
the desired fixed points are unknown, and the problem is how to determine them. The
primary function of a content-addressable memory is to retrieve a pattern (item) stored
in memory in response to the presentation of an incomplete or noisy version of that
pattern.

Page | 16

One way in which such properties may be used to implement a computational task is
by way of the concept of energy minimization. Hopfield networks are an example
of such an approach. Hopfield networks have an energy function which decreases
or is unchanged with asynchronous updating. For a given state 𝑥𝑥 ∈ {−1, 1}𝑁𝑁 of the
network and for any set of connection weights wij with wij = wji and wii = 0, let

𝐸𝐸 = −
1
2
� 𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

𝑁𝑁

𝑖𝑖,𝑗𝑗=1

Practical aspects

• How many random patterns can we store in a Hopfield network with N nodes?
In other words, given N, what is an upper bound for p, the number of stored
patterns, such that the crosstalk term remains small enough with high
probability?

o A long and sophisticated analysis of the stochastic Hopfield network
shows that if p/N > 0.138, small errors can pile up in updating and the
memory becomes useless.

• For small enough p, the stored patterns become attractors of the dynamical
system given by the synchronous updating rule. However, we also have other,
so-called spurious states.

o If we start at a state close to any of these spurious attractors then we will
converge to them. However, they will have a small basin of attraction.

Page | 3

Contents
Lectures
1. Introduction to Artificial Intelligence and Machine Learning
2. Traditional computation

2.1. Sorting algorithms
2.2. Graph search algorithms

3. Supervised neural computation
3.1. Biological neurons vs. artificial neurons
3.2. Learning in artificial neurons
3.3. From single neurons to neural networks
3.4. Learning in neural networks: Error Backpropagation in Multi-Layer Neural Networks
3.5. Supervised learning: tips and tricks

4. Unsupervised neural computation
4.1. Introduction to unsupervised learning
4.2. Radial Basis Functions
4.3. Vector Quantization
4.4. Kohonen’s Self-Organizing-Maps
4.5. Hopfield Networks

5. Deep Neural Learning
5.1. Fundamentals of Deep Networks
5.2. Common Architectural Principles of Deep Networks
5.3. Building Blocks of Deep Networks.
5.4. Major Architectures of Deep Networks

6. Technical implementations of neural computation
6.1. Recurrent networks
6.2. Time-series prediction
6.3. Support Vector Machines
6.4. Liquid State Machines

7. Reinforcement Learning
7.1. Introduction to Reinforcement Learning
7.2. Q-Learning

8. Evolutionary programming
8.1. Introduction to evolutionary computing
8.2. Genetic Algorithms

9. Fuzzy Inference Systems
9.1. Introduction to Fuzzy Logic
9.2. Fuzzy control systems

10. Online distributed streaming machine learning
10.1. Machine Learning in Real-Time Big Data Analytics

11. Immunological Computation and Artificial Immune Systems
12. Neuromorphic Systems and Spiking Neural Networks

Page | 4

5. Deep Neural Learning

Formally speaking, Deep Learning allows computational models that are composed of
multiple processing layers to learn representations of data with multiple levels of
abstraction. These methods have dramatically improved the state-of-the-art in speech
recognition, visual object recognition, object detection and many other domains such as
drug discovery and genomics. Deep Learning discovers intricate structure in large data sets
by using the backpropagation algorithm to indicate how a machine should change its internal
parameters that are used to compute the representation in each layer from the
representation in the previous layer. Deep convolutional nets have brought about
breakthroughs in processing images, video, speech and audio, whereas recurrent nets
have shone light on sequential data such as text and speech.

Deep learning solves the central problem in representation learning by introducing
representations that are expressed in terms of other, simpler representations. Deep learning
enables the computer to build complex concepts out of simpler concepts. Figure 1 shows
how a deep learning system can represent the concept of an image of a person by
combining simpler concepts, such as corners and contours, which are in turn defined in
terms of edges.

Figure 1 A Deep Learning model for image recognition

The quintessential example of a deep learning model is the feedforward deep network, or
multilayer perceptron (MLP), that we already studied in the previous chapters. A multilayer
perceptron is just a mathematical function mapping some set of input values to output
values. The function is formed by composing many simpler functions. We can think of each
application of a different mathematical function as providing a new representation of the
input. The idea of learning the right representation for the data provides one perspective

Page | 5

on deep learning. Another perspective on deep learning is that depth enables learning a
multistep computer program.

Over the last few years Deep Learning was applied to hundreds of problems, ranging from
computer vision to natural language processing. In many cases Deep Learning outperformed
previous work. Deep Learning is heavily used in both academia to study intelligence and in
the industry in building intelligent systems to assist humans in various tasks:

• Computer vision and pattern recognition
o Restore colors in B&W photos and videos
o Pixel restoration
o Real-time multi-person pose estimation
o Describing photos
o Changing gazes of people in photos
o Real-time analysis of behaviors
o Iterating photos to create new objects
o Translation

• Computer games, robots & self-driving cars
o Winning Atari Breakout
o Beating people in computer

games
o Self-driving cars
o Robotics

• Sound
o Voice generation
o Music composition
o Restoring sound in videos

• Art
o Transferring style from

famous paintings
o Automatically writing

Wikipedia articles, math
papers, computer code and
even Shakespeare

o Handwriting
• Computer hallucinations, predictions

and other wild things
o Predicting demographics and

election results
o Deep dreaming
o AI invents and hacks its own crypto to avoid eavesdropping
o Deep Learning networks creating Deep Learning networks
o Predicting earthquakes

Page | 6

5.1 Fundamentals of Deep Networks

Revisiting the definition of deep learning, the facets that differentiate deep learning
networks in general from “canonical” feed-forward multilayer networks are as follows:

• More neurons than previous networks

• More complex ways of connecting layers

• Explosion of computing power to train

• Automatic feature extraction

To further provide color to our definition of deep learning, here we define the four
major architectures of deep networks:

• Unsupervised Pre-trained Networks

• Convolutional Neural Networks

• Recurrent Neural Networks

• Recursive Neural Networks

Starting from a basic MLP model, a deep learning model assumes a high neuron
count that has risen over the years to express more complex models. Layers also
have evolved from each layer being fully connected in multilayer networks to
locally connected patches of neurons between layers in Convolutional Neural
Networks (CNNs) and recurrent connections to the same neuron in Recurrent Neural
Networks (in addition to the connections from the previous layer).

More connections means that the neural networks have more parameters to
optimize, and this required the explosion in computing power that occurred over the
past decades. All of these advances provided the foundation to build next-generation
neural networks capable of extracting features for themselves in a more intelligent
fashion. This allowed deep networks to model more complex problem spaces (e.g.,
image recognition advances) than previously possible, as we have seen in the
multitude of previous examples. As industry demands are ever changing and ever
reaching, the capabilities of neural networks have had to charge forward.

5.2 Common Architectural Principles of Deep Networks

Before we get into the specific architectures of the major deep networks, in the next
section, we extend our understanding of the core components. First, we’ll reexamine
the core components again as follows and extend their coverage for the purposes of
understanding deep networks.

Page | 7

Parameters

As we also learned in previous chapters, parameters relate to the x parameter vector
in the equation Ax = b in basic machine learning. Parameters in neural networks relate
directly to the weights on the connections in the network. We take the dot product
of the matrix A, and the parameter vector x to get our current output column vector b.
The closer our outcome vector b is to the actual values in the training data, the better
our model is. We use methods of optimization such as gradient descent to find
good values for the parameter vector to minimize loss across our training dataset.

In deep networks, we still have a parameter vector representing the connection in
the network model we’re trying to optimize. The biggest change in deep networks
with respect to parameters is how the layers are connected in the different
architectures.

Layers

Layers are a fundamental architectural unit in deep networks. One can customize
a layer by changing the type of activation function it uses (or subnetwork type).
Moreover, one can use combinations of layers to achieve a goal (e.g., classification
or regression). Finally, it is important to note that each type of layer requires different
hyperparameters (specific to the architecture) to get a deep network to learn initially.
Further hyperparameter tuning can then be beneficial through reducing overfitting.

Activation Functions

In deep network activation functions are used in specific architectures to drive
feature extraction. The higher-order features learnt from the data in deep networks
are a nonlinear transform applied to the output of the previous layer. This allows the
network to learn patterns in the data within a constrained space.

Depending on the activation function one picks, one will find that some objective
functions are more appropriate for different kinds of data (e.g., dense versus sparse).

Hidden layers are concerned with extracting progressively higher-order features from
the raw data. Commonly used functions include: Sigmoid, Tanh, Hard tanh, Rectified
Linear Unit (ReLU) (and its variants).

Output layers for regression are motivated by what type of answer we expect our
model to output. If we want to output a single real-valued number from our model, we’ll
want to use a linear activation function.

Output layer for binary classification need a sigmoid output layer with a single
neuron to return a real value in the range of 0.0 to 1.0 (excluding those values) for the
single class. This real-valued output is typically interpreted as a probability
distribution.

Page | 8

Output layer for multiclass classification one cares about the best score across
these classes. It typically uses a softmax output layer with an argmax function to get
the highest score of all the classes. The softmax output layer computes a probability
distribution over all the classes.

Loss Functions

Loss functions quantify the agreement between the predicted output (or label) and
the ground truth output. We use loss functions to determine the penalty for an
incorrect classification of an input vector. Typically, when designing deep neural
nets one can use one of the following loss functions: Squared loss, Logistic loss,
Hinge loss, Negative log likelihood.

Optimization Algorithms

Training a model in deep learning involves finding the best set of values for the
parameter vector of the model. One can think of deep learning as an optimization
problem in which one minimizes the loss function with respect to the parameters
of our prediction function (based on the model).

First-order optimization algorithms calculate the Jacobian matrix. The Jacobian
has one partial derivative per parameter (to calculate partial derivatives, all other
variables are momentarily treated as constants). The algorithm then takes one step in
the direction specified by the Jacobian. Second-order algorithms calculate the
derivative of the Jacobian (i.e., the derivative of a matrix of derivatives) by
approximating the Hessian. Second-order methods take into account
interdependencies between parameters when choosing how much to modify each
parameter.

Gradient descent is a member of this path-finding class of algorithms. Variations
of gradient descent exist, but at its core, it finds the next step in the right direction
with respect to an objective at each iteration. Those steps move us toward a global
minimum error or maximum likelihood.

Stochastic gradient descent (SGD) is machine learning’s workhorse optimization
algorithm. SGD trains several orders of magnitude faster than methods such as
batch gradient decent, with no loss of model accuracy. The strengths of SGD are
easy implementation and the quick processing of large datasets. You can adjust
SGD by adapting the learning rate (e.g., Adagrad) or using second-order
information (i.e., the Hessian). SGD is also a popular algorithm for training neural
networks due to its robustness in the face of noisy updates, building models that
generalize well.

Hyperparameters

A hyperparameter is any configuration setting of a deep net that is free to be
chosen by the user that might affect performance.

Page | 9

Here we have parameters such as:

• Layer size
o The number of neurons in a given layer. For the input layer, this will

match up to the number of features in the input vector. For the output
layer, this will either be a single output neuron or a number of neurons
matching the number of classes we are trying to predict.

• Magnitude (momentum, learning rate)
o Hyperparameters in the magnitude group involve the gradient, step size,

and momentum. The learning rate in machine learning is how fast we
change the parameter vector as we move through search space. If the
learning rate becomes too high, we can move toward our goal faster but
we might also take a step so large that we shoot right past the best
answer to the problem, as well.

o Momentum is a factor between 0.0 and 1.0 that is applied to the
change rate of the weights over time. Typically, we see the value for
momentum between 0.9 and 0.99.

• Regularization
o Regularization is a measure taken against overfitting. Overfitting

occurs when a model describes the training set but cannot generalize
well over new inputs. Overfitted models have no predictive capacity for
data that they haven’t seen.

o Regularization for hyperparameters helps modify the gradient so that it
doesn’t step in directions that lead it to overfit.

• Activations (and activation function families)
• Weight initialization strategy
• Loss functions
• Settings for epochs during training (mini-batch size)

o With mini-batching we send more than one input vector (a group or
batch of vectors) to be trained in the learning system. This allows us to
use hardware and resources more efficiently at the computer-
architecture level.

• Normalization scheme for input data

5.3 Deep Networks Building Blocks

Next, we’ll take the concepts in the previous section (i.e. Parameters, Layers Activation
functions, Loss functions, Optimization methods, Hyper-parameters) and build on
them to better understand the building block networks of deep networks.

Inspired by networks of biological neurons, feed-forward networks are the simplest
artificial neural networks. They are composed of an input layer, one or many hidden
layers, and an output layer. In this section, we introduce networks that are
considered building blocks of larger deep networks, such as Restricted Boltzmann
Machines (RBMs) and Autoencoders.

Page | 10

Both RBMs and autoencoders are characterized by an extra layer-wise step for
training. They are often used for the pretraining phase in other larger deep networks.

RBM

RBMs model probability and are great at feature extraction. They are feed-forward
networks in which data is fed through them in one direction with two biases rather
than one bias as in traditional backpropagation feed-forward networks. RBMs are used
in deep learning for feature extraction and dimensionality reduction.

“Restricted Boltzmann Machines” are networks in which connections between
nodes of the same layer are prohibited (e.g., there are no visible-visible or hidden-
hidden connections along which signal passes).

Figure 2 The Restricted Boltzmann Machine model

A standard RBM has a visible layer and a hidden layer, as shown in Figure 2. We can
also see a graph of weights (connections) between the hidden and visible units in the
figure. Think of these weights in the same way you think of weights in the classical
neural network sense. With RBMs, every visible unit is connected to every hidden unit,
yet no units from the same layer are connected. Each layer of an RBM can be
imagined as a row of nodes. The nodes of the visible and hidden layers are connected
by connections with associated weights.

The technique known as pretraining using RBMs means teaching it to reconstruct
the original data from a limited sample of that data. That is, given a chin, a trained
network could approximate (or “reconstruct”) a face. RBMs learn to reconstruct the
input dataset.

RBMs calculate gradients by using an algorithm called contrastive divergence.
Contrastive divergence (CD) is the name of the algorithm used in sampling for the

Page | 11

layer-wise pretraining of a RBM. Also called CD-k, contrastive divergence minimizes
the Kullback-Leibler (KL) divergence (the delta between the real distribution of
the data and the guess) by sampling k steps of a Markov chain to compute a guess.

Autoencoders

Autoencoders are a variant of feed-forward neural networks that have an extra
bias for calculating the error of reconstructing the original input. After training,
autoencoders are then used as a normal feed-forward neural network for
activations. This is an unsupervised form of feature extraction because the neural
network uses only the original input for learning weights rather than backpropagation,
which has labels.

We use autoencoders to learn compressed representations of datasets. Typically,
we use them to reduce a dataset’s dimensionality. The output of the autoencoder
network is a reconstruction of the input data in the most efficient form.

Autoencoders share a strong resemblance with multilayer perceptron neural
networks in that they have an input layer, hidden layers of neurons, and then an
output layer. The key difference to note between a multilayer perceptron network
diagram (from earlier chapters) and an autoencoder diagram is the output layer in an
autoencoder has the same number of units as the input layer does, as depicted in
Figure 3.

Figure 3 The Autoencoder model

Page | 12

Building a model to represent the input dataset might not sound useful on the surface.
However, we’re less interested in the output itself and more interested in the
difference between the input and output representations. If we can train a neural
network to learn data it commonly “sees,” then this network can also let us know when
it’s “seeing” data that is unusual, or anomalous.

5.4 Major Deep Networks Architectures

From the class of Unsupervised Pretrained Networks we will analyze Deep Belief
Networks (DBNs) and Generative Adversarial Networks (GANs).

Deep Belief Networks

DBNs are composed of layers of Restricted Boltzmann Machines (RBMs) for the
pretrain phase and then a feed-forward network for the fine-tune phase. Figure 4
shows the network architecture of a DBN.

Figure 4 The DBN model

Such a model uses RBMs to extract higher-level features from the raw input
vectors. To do that, we want to set the hidden unit states and weights such that when
we show the RBM an input record and ask the RBM to reconstruct the record the
record, it generates something close to the original input vector.

The fundamental purpose of RBMs in the context of deep learning and DBNs is to
learn these higher-level features of a dataset in an unsupervised training fashion.

Page | 13

Generative Adversarial Networks

GANs have been shown to be quite adept at synthesizing novel images based on
other training images. GANs are an example of a network that uses unsupervised
learning to train two models in parallel.

A key aspect of GANs (and generative models in general) is how they use a
parameter count that is significantly smaller than normal with respect to the amount
of data on which we’re training the network. The network is forced to efficiently
represent the training data, making it more effective at generating data similar to the
training data. A GAN is composed of a/some discriminator network(s) and a
generative network.

The discriminator networks take images as input, and then output a classification.
The gradient of the output of the discriminator network with respect to the synthetic
input data indicates how to make small changes to the synthetic data to make it more
realistic. The generative network in GANs generates data (or images) with a special
kind of layer called a deconvolutional layer. During training, we use
backpropagation to update the generating network’s parameters to generate more
realistic output images. The goal here is to update the generating network’s
parameters to the point at which the discriminating network is sufficiently “fooled” by
the generating network because the output is so realistic as compared to the training
data’s real images.

Next we will analyze Convolutional Neural Networks (CNN).

The goal of a CNN is to learn higher-order features in the data via convolutions.
They are well suited to object recognition with images and consistently top image
classification competitions. They can identify faces, individuals, street signs,
platypuses, and many other aspects of visual data.

CNNs overlap with text analysis via optical character recognition, but they are also
useful when analyzing words as discrete textual units. They’re also good at
analyzing sound.

The efficacy of CNNs in image recognition is one of the main reasons why the world
recognizes the power of deep learning. As Figure 5 illustrates, CNNs are good at
building position and rotation invariant features from raw image data.

CNNs tend to be most useful when there is some structure in the input data. An
example would be how images and audio data that have a specific set of repeating
patterns and input values next to each other are related spatially. Conversely, the
columnar data exported from a relational database management system (RDBMS)
tends to have no structural relationships spatially. Columns next to one another just
happen to be materialized that way in the database exported materialized view.

Page | 14

Figure 5 The CNN model for image recognition

CNNs transform the input data from the input layer through all connected layers into a
set of class scores given by the output layer. There are many variations of the CNN
architecture, but they are based on the pattern of layers, as demonstrated in Figure 6.

Figure 6 Generic CNN model

In the following paragraphs we look at the individual layers in the CNN architecture
and emphasize the core principles of operation and the impact each layer has in the
overall processing capabilities of the network.

Page | 15

Input Layers

Input layers are where we load and store the raw input data of the image for processing
in the network. This input data specifies the width, height, and number of channels.
Typically, the number of channels is three, for the RGB values for each pixel.

Convolutional Layers

Convolutional layers are considered the core building blocks of CNN architectures.
The layer will compute a dot product between the region of the neurons in the input
layer and the weights to which they are locally connected in the output layer. The
resulting output generally has the same spatial dimensions (or smaller spatial
dimensions) but sometimes increases the number of elements in the third dimension
of the output (depth dimension).

A convolution is defined as a mathematical operation describing a rule for how to
merge two sets of information. It is important in both physics and mathematics and
defines a bridge between the space/time domain and the frequency domain through
the use of Fourier transforms. It takes input, applies a convolution kernel, and gives
us a feature map as output.

Figure 7 The convolution operation in CNNs

The convolution operation, shown in Figure 7, is known as the feature detector of
a CNN. The input to a convolution can be raw data or a feature map output from
another convolution. It is often interpreted as a filter in which the kernel filters input
data for certain kinds of information; for example, an edge kernel lets pass through
only information from the edge of an image.

Pooling Layers

Pooling layers are commonly inserted between successive convolutional layers. We
want to follow convolutional layers with pooling layers to progressively reduce the

Page | 16

spatial size (width and height) of the data representation. Pooling layers reduce the
data representation progressively over the network and help control overfitting. The
pooling layer operates independently on every depth slice of the input.

Fully Connected Layers

We use this layer to compute class scores that we’ll use as output of the network
(e.g., the output layer at the end of the network). Fully connected layers have the
normal parameters for the layer and hyperparameters. Fully connected layers perform
transformations on the input data volume that are a function of the activations in the
input volume and the parameters (weights and biases of the neurons).

In the next section we will look at Recurrent Neural Networks.

Recurrent Neural Networks are in the family of feed-forward neural networks. They
are different from other feed-forward networks in their ability to send information
over time-steps. Recurrent Neural Networks take each vector from a sequence of
input vectors and model them one at a time. This allows the network to retain state
while modeling each input vector across the window of input vectors. Modeling the
time dimension is a hallmark of Recurrent Neural Networks.

Recurrent Neural Networks are a superset of feed-forward neural networks but
they add the concept of recurrent connections. These connections (or recurrent
edges) span adjacent time-steps (e.g., a previous time-step), giving the model the
concept of time. The conventional connections do not contain cycles in recurrent
neural networks. However, recurrent connections can form cycles including
connections back to the original neurons themselves at future time-steps.

LSTM Networks

Long Short-Term Memory (LSTM) networks are the most commonly used variation
of Recurrent Neural Networks. LSTM networks were introduced in 1997 by Hochreiter
and Schmidhuber.

The critical component of the LSTM is the memory cell and the gates (including
the forget gate, but also the input gate). The contents of the memory cell are
modulated by the input gates and forget gates. Assuming that both of these gates
are closed, the contents of the memory cell will remain unmodified between one time-
step and the next. The gating structure allows information to be retained across
many time-steps, and consequently also allows gradients to flow across many time-
steps. This allows the LSTM model to overcome the vanishing gradient (i.e,
gradients become too large or too small and make it difficult to model long-range
dependencies in the structure of the input dataset) problem that occurs with most
Recurrent Neural Network models.

The generic architecture of a LSTM block is depicted in Figure 8.

Page | 17

Figure 8 Generic architecture of LSTM block

LSTM layers

A basic layer accepts an input vector x (non-fixed) and gives output y. The output y
is influenced by the input x and the history of all inputs. The layer is influenced by the
history of inputs through the recurrent connections. The RNN has some internal
state that is updated every time we input a vector to the layer. The state consists of a
single hidden vector.

Training LSTM

LSTM networks use supervised learning to update the weights in the network. They
train on one input vector at a time in a sequence of vectors. Vectors are real-valued
and become sequences of activations of the input nodes. Every non-input unit
computes its current activation at any given time-step. This activation value is
computed as the nonlinear function of the weighted sum of the activations of all
units from which it receives connections. For each input vector in the sequence of
input, the error is equal to the sum of the deviations of all target signals from
corresponding activations computed by the network.

Backpropagation through time (BPTT)

Recurrent Neural Network training can be computationally expensive. The traditional
option is to use BPTT. BPTT is fundamentally the same as standard backpropagation:
we apply the chain rule to work out the derivatives (gradients) based on the connection
structure of the network. It’s through time in the sense that some of those
gradients/error signals will also flow backward from future time-steps to current time-
steps, not just from the layer above (as occurs in standard backpropagation).

Page | 18

RNNs and CNNs are usually used together to exploit both the structure in the data
and the temporal component in tasks such as labelling objects in images, as shown in
Figure 9.

Figure 9 Labeling images with a blended CNN/Recurrent Neural Network

We conclude our analysis of deep neural processing architectures with the analysis of
Recursive Neural Networks.

Recursive Neural Networks, like Recurrent Neural Networks, can deal with variable
length input. The primary difference is that Recurrent Neural Networks have the
ability to model the hierarchical structures in the training dataset. Images
commonly have a scene composed of many objects. Deconstructing scenes is often
a problem domain of interest yet is nontrivial. The recursive nature of this
deconstruction challenges us to not only identify the objects in the scene, but also
how the objects relate to form the scene.

A Recursive Neural Network architecture is composed of a shared-weight matrix
and a binary tree structure that allows the recursive network to learn varying
sequences of words or parts of an image. It is useful as a sentence and scene parser.
Recursive Neural Networks use a variation of backpropagation called
backpropagation through structure (BPTS). The feed-forward pass happens
bottom-up, and backpropagation is top-down. Think of the objective as the top of
the tree, whereas the inputs are the bottom.

Both Recursive and Recurrent Neural Networks share many of the same use cases.
Recurrent Neural Networks are traditionally used in Natural Language Processing

Page | 19

NLP because of their ties to binary trees, contexts, and natural-language-based
parsers. In the case of Recursive Neural Networks, it is a constraint that we use a
parser that builds the tree structure (typically constituency parsing). Recursive
Neural Networks can recover both granular structure and higher-level
hierarchical structure in datasets such as images or sentences.

When to use deep learning?

You should use deep learning when...

• Simpler models (logistic regression) don’t achieve the accuracy level your use
case needs

• You have complex pattern matching in images, NLP, or audio to deal with
• You have high dimensionality data
• You have the dimension of time in your vectors (sequences)

When to stick with traditional machine learning?

You should use a traditional machine learning model when...

• You have high-quality, low-dimensional data; for example, columnar data from
a database export

• You’re not trying to find complex patterns in image data

In summary, deep learning is an approach to machine learning that has drawn
heavily on our knowledge of the human brain, statistics and applied math as it
developed over the past several decades. In recent years, deep learning has seen
tremendous growth in its popularity and usefulness, largely as the result of more
powerful computers, larger datasets and techniques to train deeper networks.
The years ahead are full of challenges and opportunities to improve deep learning
even further and to bring it to new frontiers.

Page | 3

Contents
Lectures
1. Introduction to Artificial Intelligence and Machine Learning
2. Traditional computation

2.1. Sorting algorithms
2.2. Graph search algorithms

3. Supervised neural computation
3.1. Biological neurons vs. artificial neurons
3.2. Learning in artificial neurons
3.3. From single neurons to neural networks
3.4. Learning in neural networks: Error Backpropagation in Multi-Layer Neural Networks
3.5. Supervised learning: tips and tricks

4. Unsupervised neural computation
4.1. Introduction to unsupervised learning
4.2. Radial Basis Functions
4.3. Vector Quantization
4.4. Kohonen’s Self-Organizing-Maps
4.5. Hopfield Networks

5. Deep Neural Learning
5.1. Fundamentals of Deep Networks
5.2. Common Architectural Principles of Deep Networks
5.3. Building Blocks of Deep Networks.
5.4. Major Architectures of Deep Networks

6. Technical implementations of neural computation
6.1. Recurrent networks
6.2. Time-series prediction
6.3. Support Vector Machines
6.4. Liquid State Machines

7. Reinforcement Learning
7.1. Introduction to Reinforcement Learning
7.2. Q-Learning

8. Evolutionary programming
8.1. Introduction to evolutionary computing
8.2. Genetic Algorithms

9. Fuzzy Inference Systems
9.1. Introduction to Fuzzy Logic
9.2. Fuzzy control systems

10. Online distributed streaming machine learning
10.1. Machine Learning in Real-Time Big Data Analytics

11. Immunological Computation and Artificial Immune Systems
12. Neuromorphic Systems and Spiking Neural Networks

Page | 4

6. Technical implementations of neural computation

6.1. Recurrent networks

The human brain is wired not only to recognize individual instances but to also to
analyze entire sequences of inputs. These sequences are rich in information, have
complex time dependencies, and can be of arbitrary length. For example, vision,
motor control, speech, and comprehension require high-dimensional processing of
their inputs, as they change over time. This is something that feed-forward networks
are poor at modeling.

One promising solution to tackling the problem of learning sequences of information
is the recurrent neural network (RNN). Such networks are built on the same
computational unit as the feed forward neural networks, but differ in the architecture
of how these neurons are connected to one another. Feed forward neural networks
were organized in layers, where information flowed unidirectionally from input units
to output units. There were no undirected cycles in the connectivity patterns. Neurons
in the brain do contain undirected cycles as well as connections within layers and
similarly, in order to create more powerful computational systems such as those
modeled by RNNs. The generic processing scheme behind a RNN is depicted in the
following figure.

A RNN can learn many behaviors / sequence processing tasks that are not
learnable by traditional machine learning methods. This supported the use of RNNs
for technical applications: general computers which can learn algorithms to map input
sequences to output sequences, with or without a teacher. They are computationally
more powerful and biologically more plausible than other adaptive approaches
such as Hidden Markov Models (no continuous internal states), feed-forward networks
or Support Vector Machines (no internal states at all).

Training a RNN - Backpropagation through time
How do we train a RNN to achieve such a behavior? Specifically, how do we determine
the connection weights? And how do we choose the initial activities of all of the hidden

Page | 5

units? An initial idea might be to use backpropagation directly, due to its successful
use in feed forward neural networks.

The problem with using backpropagation in RNNs is that there are cyclical
dependencies. In feed-forward networks, when we calculate the error derivatives with
respect to the weights in one layer, we could express them completely in terms of the
error derivatives from the layer above. In a recurrent neural network, we don't have
this layering because the neurons do not form a directed acyclic graph. Trying to
backpropagate through a RNN could force us to try to express an error derivative in
terms of itself, which is not analytically tractable.
So how can we use backpropagation for RNNs, if at all? The answer lies in employing
a transformation, where we convert our RNN into a new structure that's essentially a
feed-forward neural network. This strategy is termed "unrolling" the RNN through
time.

The process is simple, but it has a profound impact on our ability to analyze the neural
network. We take the RNN's inputs, outputs, and hidden units and replicate it for every
time step. These replications correspond to layers in our new feed forward neural
network. We then connect hidden units as follows. If the original RNN has a connection
of weight ω from neuron i to neuron j, in our feed forward neural network, we draw a
connection of weight ω from neuron i in every layer tk to neuron j in every layer tk+1.

Thus, to train our RNN, we randomly initialize the weights, "unroll" it into a feed forward
neural network, and backpropagate to determine the optimal weights. To determine
the initializations for the hidden states at time t0, we can treat the initial activities as
parameters fed into the feed forward network at the lowest layer and backpropagate
to determine their optimal values as well.

Page | 6

We run into a problem however, which is that after every batch of training examples
we use, we need to modify the weights based on the error derivatives we calculated.
In our feed-forward network, we have sets of connections that all correspond to the
same connection in the original RNN. The error derivatives calculated with respect to
their weights, however, are not guaranteed to be equal, which means we might be
modifying them by different amounts.
We can get around this problem, by averaging (or summing) the error derivatives over
all the connections that belong to the same set. This means that after each batch, we
modify corresponding connections by the same amount, so if they were initialized to
the same value, they will end up at the same value.

Typical applications of RNNs

RNNs have shown great success in many tasks, such as: language modeling and text
generation, machine translation, speech recognition and image description
generation. At the moment the most commonly used type of RNNs are Long Short-
Term Memory Networks (LSTMs).

With respect to language modeling and text generation given a sequence of words
we want to predict the probability of each word given the previous words. Language
models allow us to measure how likely a sentence. Such a metric is important for
machine translation (since high-probability sentences are typically correct). A side-
effect of being able to predict the next word is that we get a generative model, which
allows us to generate new text by sampling from the output probabilities. In language
modeling the input is typically a sequence of words (encoded as one-hot vectors for
example), and our output is the sequence of predicted words, as shown in the
following diagram where Whx, Whh, Why, are the input, hidden and output weights of the
network.

Page | 7

Machine translation is similar to language modeling in that the input is a sequence
of words in a source language (e.g. German). We want to output a sequence of words
in a target language (e.g. English). A key difference is that our output only starts after
the system has seen the complete input, because the first word of the translated
sentences may require information captured from the complete input sequence, as
shown in the figure.

With respect to speech recognition, given an input sequence of acoustic signals from
a sound wave, a RNN can predict a sequence of phonetic segments together with their
probabilities.

Finally, together with Convolutional Neural Networks (CNNs), RNNs have been
used as part of a model to generate descriptions for unlabeled images. The
combined model even aligns the generated words with features found in the images,
as shown in the following figure.

Another application where RNNs are successful is time-series prediction. Time
series prediction problems are a difficult type of predictive modeling problem. Unlike

Page | 8

regression predictive modeling, time series also adds the complexity of sequence
dependence among the input variables.

6.2 Time-series prediction

A time series is a sequence of data points with a natural temporal order, measured
usually at uniform time intervals. Typical examples are financial markets (e.g.
economic factors, financial indexes, exchange rate, spread), meteorology (e.g.
weather variables, like temperature, pressure, and wind), biomedicine (e.g.
physiological signals, heart-rate, patient temperature), web (e.g. clicks, logs) etc.

The analysis of time-series brings a deep understanding of the data. First of all, time-
series analysis can realize: the prediction of the future based on the past, the control
of the process producing the series, the understanding of the mechanism generating
the series, and finally the description of the salient features of the series.

Forecasting a time series is possible since future depends on the past or analogously
because there is a relationship between the future and the past. However this relation
is not deterministic and can hardly be explained in an analytical form.

The selection of a proper model is extremely important as it reflects the underlying
structure of the series and this fitted model in turn is used for future forecasting. A
time series model is said to be linear or non-linear depending on whether the
current value of the series is a linear or non-linear function of past observations.

In general models for time series data can have many forms and represent different
stochastic processes. There are two widely used linear time series models in literature,

Page | 9

namely the Autoregressive (AR) and Moving Average (MA) models. Combining
these two, the Autoregressive Moving Average (ARMA) and Autoregressive
Integrated Moving Average (ARIMA) models have been proposed in literature. The
Autoregressive Fractionally Integrated Moving Average (ARFIMA) model
generalizes ARMA and ARIMA models.

An ARMA model is a combination of AR and MA models and is suitable for univariate
time series modeling. In an AR model the future value of a variable is assumed to be
a linear combination of p past observations and a random error together with a
constant term. Mathematically the AR model can be expressed as:

 𝑦𝑦𝑡𝑡 = 𝑐𝑐 + �𝜙𝜙𝑖𝑖𝑦𝑦𝑖𝑖−1 + 𝜖𝜖𝑡𝑡

𝑝𝑝

𝑖𝑖=1

Here 𝑦𝑦𝑡𝑡 and 𝜖𝜖𝑡𝑡 are respectively the actual value and random error (or random shock)
at time t, 𝜙𝜙𝑖𝑖 (i = 1,2,..., p) are model parameters and c is a constant. The integer
constant p is the order of the model.

Just as an AR model regress against past values of the series, an MA model uses
past errors as the explanatory variables. The MA model is given by:

𝑦𝑦𝑡𝑡 = 𝜇𝜇 + �𝜃𝜃 𝑗𝑗𝜖𝜖𝑡𝑡−𝑗𝑗 + 𝜖𝜖𝑡𝑡

𝑞𝑞

𝑗𝑗=1

Here μ is the mean of the series, 𝜃𝜃 𝑗𝑗 (j = 1,2,...,q) are the model parameters and q is
the order of the model.

Autoregressive and moving average models can be effectively combined together to
form a general and useful class of time series models, known as the ARMA models.
Mathematically an ARMA model is represented as:

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜖𝜖𝑡𝑡 + �𝜙𝜙𝑖𝑖𝑦𝑦𝑖𝑖−1

𝑝𝑝

𝑖𝑖=1

+ �𝜃𝜃 𝑗𝑗𝜖𝜖𝑡𝑡−𝑗𝑗

𝑞𝑞

𝑗𝑗=1

Here the model orders p, q refer to p autoregressive and q moving average terms.

The ARMA models, described above can only be used for stationary time series data.
However in practice many time series such as those related to socio-economic and
business show non-stationary behavior. Time series, which contain trend and
seasonal patterns, are also non-stationary in nature. Thus from application view point
ARMA models are inadequate to properly describe non-stationary time series, which
are frequently encountered in practice. For this reason the ARIMA model is proposed,
which is a generalization of an ARMA model to include the case of non-stationarity as
well.

Page | 10

Although linear models have drawn much attention due to their relative simplicity in
understanding and implementation, many practical time series show non-linear
patterns. Various nonlinear models have been suggested in literature:
Autoregressive Conditional Heteroskedasticity (ARCH), Non-linear
Autoregressive (NAR), and Nonlinear Moving Average (NMA).

Why using RNNs for prediction?

AR, MA and ARMA models are limited to prediction of linear system dynamics
whereas RNNs can approximate nonlinear functions (i.e. Universal approximation
theorem). Moreover, RNNs can be applied without an extensive analysis of underlying
assumptions and are useful when knowledge is difficult to specify but there is an
abundance of examples (non-parametric modeling). Hence, time series prediction is
based on the inference of future behavior from examples of past behavior.

Time-series prediction can be realized with various architectures of neural networks,
both feedforward (FFNN) and recurrent (RNN). We provide a comparative view on
how such neural processing architectures can tackle the forecasting problem.

Providing an extension of the multilayer perceptron with context units simple RNN
have a memory or sense of time. Such networks are useful for tasks that are
dependent on a sequence of successive states. A RNN can predict the next item in a
sequence from the current and preceding input and can be trained by back-
propagation, as previously shown. There are 2 types of simple RNNs, Jordan and
Elman networks, which differ through their internal connectivity (see figure).

Page | 11

In the following section we analyze the basics of Backpropagation through time as
applied to Nonlinear Auto Regressive with eXogenous inputs (NARX) models.
Such models are used to implement RNNs in real world scenarios. NARX relates the
current value of a time series to the past values of: the time series and the driving
exogenous series, as shown in the following diagram:

Applying Backpropagation through time to the NARX model we have.

Page | 12

For each pattern presentation:

• Update the weights in each instance of f according to standard back-
propagation;

• Assign to the weights the average of all weights across instances;
• Compute Xt+1.

Despite it provides a faster solution finding than general-purpose optimization
techniques the method risks to fall in local optima or vanishing gradient. Finally, the
computational power of such models was analyzed and described through two
theorems and a corollary:

• Theorem I (Siegelmann and Sontag, 1991)
o All Turing machines may be simulated by fully connected RNN built on

neurons with sigmoid activation function.
• Theorem II (Siegelmann et al. 1997)

o NARX network with one layer of hidden neurons with sigmoid activation
function and a linear output neuron can simulate fully connected RNN
with sigmoid activation function except for a linear slowdown.

• Corollary (Giles, 1996)
o NARX networks with one hidden layer of neurons and sigmoid activation

function and a linear output neuron are Turing equivalent.

In the next section we analyze some basic examples on applying such models for
prediction.

Page | 13

Page | 14

Up to this point, we have studied about various stochastic and neural network methods
for time series modeling and forecasting. Despite of their own strengths and
weaknesses, these methods are quite successful in forecasting applications.
Recently, a new statistical learning theory, the Support Vector Machine (SVM) has
been receiving increasing attention for classification and forecasting.

6.3. Support Vector Machines

Initially SVMs were designed to solve pattern classification problems, such as
optimal character recognition, face identification and text classification, etc. But soon
they found wide applications in other domains, such as function approximation,
regression estimation and time series prediction problems.

The objective of SVM is to find a decision rule with good generalization ability through
selecting some particular subset of training data, called support vectors. In this
method, an optimal separating hyperplane is constructed, after nonlinearly
mapping the input space into a higher dimensional feature space. Thus, the
quality and complexity of SVM solution does not depend directly on the input space.

The training process is equivalent to solving a linearly constrained quadratic
programming problem. So, contrary to other networks’ training, the SVM solution is
always unique and globally optimal. However a major disadvantage of SVM is that
when the training size is large, it requires an enormous amount of computation
which increases the time complexity of the solution.

Page | 15

The main idea of SVM when applied to binary classification problems is to find a
canonical hyperplane which maximally separates the two given classes of training
samples, as shown in the following diagram.

For this classification problem, we can define a linear classifier for both a 2D and 3D
input space.

But, a question arises, which is the best (optimal) linear classifier? The solution is to
select the most stable under perturbations of the inputs (i.e. the maximum margin
solution), as shown in the next diagram depicting the margins and support vectors.

Page | 16

The margin maximization process assumes finding the hyperplanes separating the
data which maximize a certain distance metric, as depicted in the next diagram.

In the case there are outliers the problem is which is the best w with outliers? In this
case we must make a tradeoff between the margin and the number of mistakes on the
training data. The solution comes from calculating the soft margin as shown in the
following diagram.

In SVM applications it is convenient to map the points of the input space to a high
dimensional feature space through some non-linear mapping and the optimal
separating hyperplane is constructed in this new feature space. This method also
resolves the problem where the training points are not separable by a linear
decision boundary.

Page | 17

Because SVM uses an appropriate transformation the training data points can be
made linearly separable in the feature space. The key idea is the kernel trick, briefly
introduced in the following diagram.

A common choice for kernels is the Gaussian radial basis function but functions like
polynomial or hyperbolic tangent are also used. Usually, in order to find the best kernel
search and optimization techniques are employed, such as grid search, random
search or Bayesian optimization.

The standard SVM formulation solves only binary classification problems,
nevertheless combining several binary classifiers to construct a multi-class classifier
is a usual technique. The typical multi-class classification models are One-versus-
all (winner-takes-all strategy) and One-versus-one (max-wins voting strategy) and
have empirically good performance, a solution that is global and unique and a simple
geometric interpretation.

6.4. Liquid State Machines

The Liquid State Machine (LSM) had been proposed as a computational model that
is more adequate for modeling computations in cortical microcircuits than
traditional models, such as Turing machines or attractor based models in
dynamical systems (i.e. RNNs). In contrast to these other models, the LSM is a model
for real-time computations on continuous streams of data, both inputs and outputs
of a LSM are streams of data in continuous time.

The basic idea of LSM is to use a high dimensional dynamical system and have
the inputs continuously perturb it. If the dynamics are sufficiently complex, the LSM
should act as a set of filters projecting the inputs into a higher dimensional space.

Page | 18

The LSM uses the internal dynamics of a recurrent spiking neural network to carry
out computations on its input. The internal state serves as input for the so-called
readout function. The liquid itself does not generate any output; it merely serves as
a 'reservoir' for the inputs. The readout then looks at the liquid state (the response of
the liquid to a certain input), and computes the output of the LSM.

Given a time series of input, the LSM can produce a time series of behaviors as
output. To get the desired behaviors, one will have to adjust the weights on the links
between the core and the output.

The LSM come as an alternative to RNNs (Maass 2001, Jaeger 2001), which are more
difficult to train than feed-forward neural networks and infinitesimally small changes to
RNN parameters can lead to drastic discontinuous changes in its behavior. Moreover,
gradient descent RNN training methods might: have slow convergence
(computationally expensive); involve a critical selection of learning parameters
(vanishing gradient problem); or fall in local minima.

LSMs are an approach to a more general class of models called, reservoir
computing. This approach to computation is represented by two types of models,
Echo state networks and Liquid state machines. The basic working principle is
depicted in the following diagram.

The recurrently connected nodes compute a large variety of nonlinear functions
on the input. Given a large enough variety it is possible to obtain linear combinations
(using the read out units) to perform arbitrary mathematical operations.

Reservoir computing and LSMs greatly facilitates the practical application of RNNs,
such that in many tasks reservoir computing networks outperform classical fully trained
RNNs.

Page | 19

The underlying working principles of the LSM can be tracked back in neurobiological
systems, namely looking at the cerebellum as a liquid state machine (Yamazaki and
Tanaka 2005).

In this model, the granular layer represents the passage of time by generating long
sequences of active spiking populations (liquid state) whereas the Purkinje cells
stop firing at the timing instructed by climbing fiber signals from the inferior olive
(readout neurons – typically a trained FFNN).

A LSM comprises three parts, an input layer, a large randomly interconnected
unit which has the intermediate states transformed from input, and an output layer.
As the name of the model hints, they use the microcircuit as a “liquid filter” that serves
as an unbiased fading memory about current and preceding inputs to the circuit.
Typically recurrent neural nets that employ Leaky Integrate and Fire Neurons (LIF)
are used in these machines. The basic structure is depicted in the next diagram:

Page | 20

The liquid filter unit L serves like excitable medium core to pre-process the input u and
transforms the input into liquid states x. Then the temporal features extracted are
passed to the readout unit through a function f that maps the liquid state x at time t
into the output.

Given the previous sections and analysis we performed on various neurally inspired
computational architectures, we can enumerate the reasons why LSMs are attractive
and an active area of research.

Advantages:

• Efficient in comparison with classical trained RNNs.
• Easier to learn dependencies requiring long-range memory.
• The same network can perform multiple computations on different time-scales.

Disadvantages:

• LSMs don't actually explain how the brain functions. At best they can replicate
some parts of brain functionality.

• Inefficient from an implementation point of view in comparison with custom
designed circuits.

Page | 3

Contents
Lectures
1. Introduction to Artificial Intelligence and Machine Learning
2. Traditional computation

2.1. Sorting algorithms
2.2. Graph search algorithms

3. Supervised neural computation
3.1. Biological neurons vs. artificial neurons
3.2. Learning in artificial neurons
3.3. From single neurons to neural networks
3.4. Learning in neural networks: Error Backpropagation in Multi-Layer Neural Networks
3.5. Supervised learning: tips and tricks

4. Unsupervised neural computation
4.1. Introduction to unsupervised learning
4.2. Radial Basis Functions
4.3. Vector Quantization
4.4. Kohonen’s Self-Organizing-Maps
4.5. Hopfield Networks

5. Deep Neural Learning
5.1. Fundamentals of Deep Networks
5.2. Common Architectural Principles of Deep Networks
5.3. Building Blocks of Deep Networks.
5.4. Major Architectures of Deep Networks

6. Technical implementations of neural computation
6.1. Recurrent networks
6.2. Time-series prediction
6.3. Support Vector Machines
6.4. Liquid State Machines

7. Reinforcement Learning
7.1. Introduction to Reinforcement Learning
7.2. Q-Learning

8. Evolutionary programming
8.1. Introduction to evolutionary computing
8.2. Genetic Algorithms

9. Fuzzy Inference Systems
9.1. Introduction to Fuzzy Logic
9.2. Fuzzy control systems

10. Online distributed streaming machine learning
10.1. Machine Learning in Real-Time Big Data Analytics

11. Immunological Computation and Artificial Immune Systems
12. Neuromorphic Systems and Spiking Neural Networks

Page | 4

7. Reinforcement Learning

“If an action taken by a learning system is followed by a satisfactory state of affairs,
then the tendency of the system to produce that particular action is strengthened or
reinforced. Otherwise, the tendency of the system to produce that action is weakened”.
This generic definition was given in 1991 by R. Sutton, the inventor of Reinforcement
Learning (RL), to root such a novel learning mechanism in the framework of the
already formalized adaptive optimal control.

Many non-linear control problems today cannot get solved by computers; not because
of memory and CPU-time, but because the system designer does not know how to
program “the correct things”, for example: inverted pendulum uprising, pole balancing,
airplane stabilization and even board games.

RL has been seen as a derivative of supervised learning based on trial-and-error
(and reward). In contrast to supervised learning, there is no direct teacher to provide
how much output error a particular action has produced. Instead, the output has been
quantified into either ‘positive’ or ‘negative’ reward corresponding to closer to or
further from the goal.

7.1 Introduction to Reinforcement Learning

In the basic formulation RL models allow an agent to actively choose a decision policy
based on explorations of the environment.

http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node28.html

The main elements of a RL model are:

1. the Environment
2. the Reward
3. the Policy
4. the Value function

In brief, the policy shows how to choose a good action for a given state, the value
function shows how good / valuable a state is, whereas the reward shows how much
reward does being in a certain state bring. The RL searches a mapping from state
to action by trial-and-error.

Page | 5

1. Environment

The environment must be observable through the sensory readings and actions
must have an impact on the environment through the motor commands. In
defining the environment some assumptions are made. The environment must be:
perfectly observable (i.e. all states that potentially have an impact on the choice
of actions can be observed); deterministic (i.e. same actions taken in same state
lead to same results in repeated trials). These constraints are relaxed in more
advanced algorithms, but for the current introduction we will consider them.

2. Reward

The reward r(s), or the reinforcement signal, depicts a mapping from state to
action and is justified by the environment giving reward to the learning system in
obvious situations (i.e. after running a board game or when the plane crashes).
The RL agent tries to maximize all expected future reward. It is the job of the
system designer to define a reward function correctly. There are at least three
types of rewards:

• Pure delayed reward
o All reward is zero until the final state is reached and the sign of the

final reward indicates the success or failure.
o Examples:

 Playing backgammon
• States: configuration of pieces (high-dimensional state

space);
• Reward: a final “win” gives a reward of +1 whereas a

final “loss” gives a reward of -1; there is no reward for
intermediate actions.

 Cart balancing
• RL should keep the pole upright by moving the cart left

or right;
• Reward: final rewards -1 if pole falls or cart touches

left/right borders and 0 otherwise.

Page | 6

• Minimum time to goal reward
o Example:

 Get a car uphill
• The car’s engine is too weak to get the car up by itself.

The RL system needs to find the concept of
“momentum” to get up to the goal and minimize the time
spent in the valley;

• State space: position of the car, velocity of the car;
• Action space: drive forward, drive backward, empty

gear;
• Reward: continuously -1 at every time step and 0 once

the car reached the Goal.

• Multi-player games
o Two or more agents work simultaneously to achieve potentially

opposing goals:
 Predator and prey scenario:

• One robot is chasing another robot; so one agent tries
to minimize the distance between the two, the other
robot tries to maximize the distance;

Page | 7

• The predator has to select actions that provide the best
reward given the unknown actions of the prey so that it
is learning to maximize reward in a “worst case
scenario”.

3. Policy

The policy π(s) is responsible to map from state to action to be taken. This is what
needs to be learned: how to choose a good action for a given state.

4. Value function

The value function, V(s), shows how valuable a state is. The value of a state is
defined as the sum of the expected future rewards when starting from a state
s following a policy π(s). An important observation is that, the value function can
be represented as a neural network, an equation or as a look-up table.

There are two models for value functions:

• Finite horizon model

𝑉𝑉(𝑠𝑠) = ∑ 𝑟𝑟�𝑠𝑠(𝑡𝑡)�,𝑛𝑛
𝑡𝑡=1 where 𝑠𝑠(𝑡𝑡 + 1) = 𝜋𝜋(𝑠𝑠(𝑡𝑡))

• Infinite horizon model

𝑉𝑉(𝑠𝑠) = ∑ 𝛾𝛾𝑡𝑡𝑟𝑟�𝑠𝑠(𝑡𝑡)�,∞
𝑡𝑡=0 where 𝑠𝑠(𝑡𝑡 + 1) = 𝜋𝜋�𝑠𝑠(𝑡𝑡)�, 𝛾𝛾𝑡𝑡 ∈]0,1]

A good example is the Markov Decision Processes (MDP). MDPs assume that
the complete state of the world is visible to the agent. This is clearly highly
unrealistic (think of a robot in a room with enclosing walls: it cannot see the state
of the world outside of the room). POMDPs (Partially Observable MDPs) model the
information available to the agent by specifying a function from the hidden state to
the observables, just as in an HMM. The goal now is to find a mapping from
observations (not states) to actions.

How to find an algorithm that finds the best possible value function? Going from v(s)
to find π(s) is simple, we could, for example, use simple hill-climbing and chose the
action which maximizes v(s+1).

In many real-world cases, agents must deal with environments that contain non-
determinism. Perhaps the agent’s actions can fail, or its sensors can be
inaccurate, or outside forces might change the environment. Deterministic
environments are nice, because they let us apply search algorithms such as A* to find
an optimal sequence of actions. However, many environments are not deterministic.

As we previously remarked MDPs are a way to model sequential decision making
under uncertainty. In this framework one can formulate the total reward from a policy
as the sum of the discounted expected utility of each state visited by that policy.

Page | 8

The optimal policy is the policy that maximizes this equation. In this assignment, we
will look at three algorithms for discovering this policy. Several methods have been
developed to tackle this problem.

Value iteration

The essential idea behind value iteration is that if we knew the true value of each state,
our decision would be simple: always choose the action that maximizes expected
utility. But we don’t initially know a state’s true value; we only know its immediate
reward. But, for example, a state might have low initial reward but be on the path to a
high-reward state.

Assuming we have a look-up table of values v(s) and we sweep through the table to
update vt:

𝑉𝑉′𝑡𝑡 = max
𝜋𝜋(𝑠𝑠)

(𝑟𝑟(𝑠𝑠𝑡𝑡+1) + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡+1))

or “incrementally”

Δ𝑉𝑉′𝑡𝑡 = 𝜂𝜂(max
𝜋𝜋(𝑠𝑠)

�𝑟𝑟(𝑠𝑠𝑡𝑡+1) + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡+1)� − 𝑉𝑉(𝑠𝑠𝑡𝑡))

The value iteration algorithm is guaranteed to find the best control policy for any system
by taking long term reward into account, though r(s). But the system designer needs to know
the results of all actions (i.e. through max

𝜋𝜋(𝑠𝑠)
) in a given state and it needs very long time to

converge.

The pseudo-code for the value iteration algorithm:

 Initialize V(s) = rand() for all s ∋ target
 Initialize V(s) = target value for all s ∈ target
 Repeat
 Δ = 0
 for all s ∈ S in random order
 𝑣𝑣 − 𝑉𝑉(𝑠𝑠)
 V(s) = max

𝜋𝜋(𝑠𝑠)
�𝑟𝑟(𝑠𝑠𝑡𝑡+1) + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡+1)�

 Δ = max (Δ, |𝑣𝑣 − 𝑉𝑉(𝑠𝑠)|)
 end

 until Δ == 0 𝑜𝑜𝑟𝑟 Δ ≤ 0

Continuous states, Residual Gradient Algorithm

A RL algorithm can be guaranteed to converge for lookup tables, yet unstable for function-
approximation systems that have even a small amount of generalization. Direct algorithms
can be fast but unstable, and residual gradient algorithms can be stable but slow. Direct
algorithms attempt to make each state match its successors, but ignore the effects of
generalization during learning. Residual gradient algorithms take into account the effects

Page | 9

of generalization, but attempt to make each state match both its successors and its
predecessors.

Considering that the value function can be calculated as

𝑉𝑉(𝑠𝑠) = 𝑉𝑉∗(𝑠𝑠) + 𝑒𝑒(𝑠𝑠)

where 𝑉𝑉∗(𝑠𝑠) is the unknown “perfect” value of state s and e(s) the error, instead of a
look-up table V(s) we can use a function approximator to compute V(s). Neural
networks, as universal function approximators, are a good candidate for such a
task. We can rewrite the previous equation as a function approximation problem
given the current set of weights wt with

𝑉𝑉∗(𝑠𝑠𝑡𝑡) = 𝑉𝑉(𝑠𝑠𝑡𝑡,𝑤𝑤𝑡𝑡) = 𝑁𝑁𝑒𝑒𝑁𝑁𝑟𝑟𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑡𝑡(𝑠𝑠𝑡𝑡,𝑤𝑤𝑡𝑡)

and the change in weights

Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂(max
𝜋𝜋(𝑠𝑠)

�𝑟𝑟(𝑠𝑠𝑡𝑡+1) + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡+1)� − 𝑉𝑉(𝑠𝑠𝑡𝑡))
𝜕𝜕𝑉𝑉(𝑠𝑠𝑡𝑡,𝑤𝑤𝑡𝑡)

𝜕𝜕𝑤𝑤𝑡𝑡

where

Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂(max
𝜋𝜋(𝑠𝑠)

�𝑟𝑟(𝑠𝑠𝑡𝑡+1) + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡+1)� − 𝑉𝑉(𝑠𝑠𝑡𝑡))�������������������������
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 𝑎𝑎𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡 𝑉𝑉

𝜕𝜕𝑉𝑉(𝑠𝑠𝑡𝑡,𝑤𝑤𝑡𝑡)
𝜕𝜕𝑤𝑤𝑡𝑡�������

𝑡𝑡ℎ𝑝𝑝 𝑝𝑝ℎ𝑎𝑎𝑛𝑛𝑎𝑎𝑝𝑝 𝑝𝑝𝑓𝑓 𝑉𝑉 𝑤𝑤.𝑝𝑝.𝑡𝑡.𝑡𝑡ℎ𝑝𝑝 𝑤𝑤𝑝𝑝𝑤𝑤𝑎𝑎ℎ𝑡𝑡𝑠𝑠 (𝑠𝑠𝑝𝑝𝑝𝑝 𝑏𝑏𝑎𝑎𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

This allows “interpolating” between states and starting using the RL even when not
all states have been explored. In this formulation the learning rate 𝜼𝜼 has to be very
small otherwise oscillations might occur because we are updating the weights at
time t, but once the update has occurred, the “error” has changed because it depends
on w. A solution would be to use a different error measure of doing small changes
only.

Value iteration works fine, but it has two weaknesses: first, it can take a long time
to converge in some situations, even when the underlying policy is not changing, and
second, it’s not actually doing what we really need. We actually don’t care what the
value of each state is; that’s just a tool to help us find the optimal policy.
So why not just find that policy directly? We can do so by modifying value iteration
to iterate over policies. We start with a random policy, compute each state’s utility
given that policy, and then select a new optimal policy. This technique is called policy
iteration.

Page | 10

7.2 Q-Learning

Value Iteration and Policy Iteration work well for determining an optimal policy, but
they assume that the agent has a great deal of domain knowledge. Specifically,
they assume that the agent accurately knows the transition function and the
reward for all states in the environment. This is considerable amount information to
which, in many cases, an agent may not have access to.

In order to handle such cases there is a way to learn this information. In essence, there
is a trade-off between learning time for a priori knowledge. One way to do this is
using Q-learning. This RL model is a form of model-free learning, meaning that an
agent does not need to have any model of the environment; it only needs to know
what states exist and what actions are possible in each state.

The core idea is to map the tuple (state, action) to reward. We define a function
Q(s,a) as the reward for a given action in a state plus all future rewards along the
optimal actions:

𝑄𝑄(𝑠𝑠, 𝑁𝑁) = 𝑟𝑟(𝑠𝑠,𝑁𝑁) + 𝛾𝛾max𝑄𝑄(𝑠𝑠′,𝑁𝑁)

This formulation allows the agent to “perform” only states st and st+1, not a large
number of st+1.
We introduce the basic algorithm by looking at a simple example, Search and rescue
robot planning. Suppose the robot operates in an environment with 5 rooms connected
with certain doors, as shown in the following figure. The task for the robot, if placed
initially in any room, is to find the best way to reach outside world (F) from that room
without knowing the pattern?

Page | 11

An extension to Q-Learning for a continuous state space has also been developed. In
this case we use a neural network for Q(s,a) and the change in Q is given by

Δ𝑄𝑄(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) = �𝑟𝑟(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) + 𝛾𝛾max𝑄𝑄(𝑠𝑠′,𝑁𝑁)� − 𝑄𝑄(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡))

and the change in weights

Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂Δ𝑄𝑄(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡)
𝜕𝜕𝑄𝑄(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡,𝑤𝑤𝑡𝑡)

𝜕𝜕𝑤𝑤𝑡𝑡

Another RL algorithm used in practice is Temporal Difference (TD) Learning, which
is a more general approach over Q-Learning. TD-Learning is an approach to learning
how to predict a quantity that depends on future values of a given signal. It can be
used to learn both the value function and the Q-function, whereas Q-learning is a
specific TD-Learning algorithm used to learn the Q-function.

Assume we have a RL system in which a sequence of actions is deterministic.

In such a system, if we initialize values randomly as before, most updates of values
are based on nothing but random values. “True” information is only slowly transported
from “right to left”. Here it needs 1000 steps until “true” information arrives at state 1.
We would prefer to update the values of a state s on something more than just value
of s+1. If we expand the previous formulation we obtain:

𝑄𝑄1(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) + 𝛾𝛾max𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑁𝑁𝑡𝑡+1)

𝑄𝑄2(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) + 𝛾𝛾𝑟𝑟(𝑠𝑠𝑡𝑡+1,𝑁𝑁𝑡𝑡+1) + 𝛾𝛾2max𝑄𝑄(𝑠𝑠𝑡𝑡+2,𝑁𝑁𝑡𝑡+2)

𝑄𝑄3(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) + 𝛾𝛾𝑟𝑟(𝑠𝑠𝑡𝑡+1,𝑁𝑁𝑡𝑡+1) + 𝛾𝛾2𝑟𝑟(𝑠𝑠𝑡𝑡+2,𝑁𝑁𝑡𝑡+2) + γ3max𝑄𝑄(𝑠𝑠𝑡𝑡+3,𝑁𝑁𝑡𝑡+3)

…
𝑄𝑄𝑛𝑛(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑁𝑁𝑡𝑡) + 𝛾𝛾𝑟𝑟(𝑠𝑠𝑡𝑡+1,𝑁𝑁𝑡𝑡+1) + ⋯+ 𝛾𝛾𝑛𝑛−1𝑟𝑟(𝑠𝑠𝑡𝑡+𝑛𝑛−1,𝑁𝑁𝑡𝑡+𝑛𝑛−1)

+ γnmax𝑄𝑄(𝑠𝑠𝑡𝑡+𝑛𝑛,𝑁𝑁𝑡𝑡+𝑛𝑛)

But again, in a real-world system we cannot access future states, especially in a non-
Markov system. In robotics, RL systems typically perform some actions and remember
past rewards and states, and apply such updates retrospectively.
TD-Learning methods learn their estimates in part on the basis of other estimates.
They learn a guess from a guess - they bootstrap.

Page | 12

TD-Learning methods are alternatives to Monte Carlo methods for solving the
prediction problem. In both cases, the extension to the control problem is via the
idea of generalized policy iteration (GPI) that we abstracted from dynamic
programming. This is the idea that policy and value functions should interact in
such a way that they both move toward their optimal values.

TD-Learning methods are naturally implemented in an on-line, fully incremental
fashion compared to Monte Carlo methods. With Monte Carlo methods one must
wait until the end of an episode, because only then is the return known, whereas
with TD methods one need wait only one time step.

Page | 3

Contents
Lectures
1. Introduction to Artificial Intelligence and Machine Learning
2. Traditional computation

2.1. Sorting algorithms
2.2. Graph search algorithms

3. Supervised neural computation
3.1. Biological neurons vs. artificial neurons
3.2. Learning in artificial neurons
3.3. From single neurons to neural networks
3.4. Learning in neural networks: Error Backpropagation in Multi-Layer Neural Networks
3.5. Supervised learning: tips and tricks

4. Unsupervised neural computation
4.1. Introduction to unsupervised learning
4.2. Radial Basis Functions
4.3. Vector Quantization
4.4. Kohonen’s Self-Organizing-Maps
4.5. Hopfield Networks

5. Deep Neural Learning
5.1. Fundamentals of Deep Networks
5.2. Common Architectural Principles of Deep Networks
5.3. Building Blocks of Deep Networks.
5.4. Major Architectures of Deep Networks

6. Technical implementations of neural computation
6.1. Recurrent networks
6.2. Time-series prediction
6.3. Support Vector Machines
6.4. Liquid State Machines

7. Reinforcement Learning
7.1. Introduction to Reinforcement Learning
7.2. Q-Learning

8. Evolutionary programming
8.1. Introduction to evolutionary computing
8.2. Genetic Algorithms

9. Fuzzy Inference Systems
9.1. Introduction to Fuzzy Logic
9.2. Fuzzy control systems

10. Online distributed streaming machine learning
10.1. Machine Learning in Real-Time Big Data Analytics

11. Immunological Computation and Artificial Immune Systems
12. Neuromorphic Systems and Spiking Neural Networks

Page | 4

8. Evolutionary programming

Evolutionary programming is a method for simulating evolution that has been
investigated for over 30 years. The inspiration for evolutionary methods goes back to
the 1850s and the work of Charles Darwin with his theories of evolution, natural
selection and ‘survival-of-the-fittest’. This chapter tries to offer an introduction to
evolutionary programming, and indicates its relationship to other methods of
evolutionary computation, specifically genetic algorithms and evolution strategies.

The efforts within the field of evolutionary computation have generally followed three
main lines of investigation: (1) genetic algorithms, (2) evolution strategies, or (3)
evolutionary programming. These techniques are broadly similar and rely on a
population of competing solutions which are subjected to random alterations and
compete to be retained as parents of successive reproduction epochs.

The differences between the methods concern the level in the hierarchy of
evolution being modeled: the chromosome, the individual, or the species.

Looking at the chromosome level, Genetic Algorithms model evolution as a
succession of changing gene frequencies, where competing solutions are encoded
as chromosomes in genes. The space of possible solutions is explored by applying
transformations to the solutions as observed in the chromosomes of living
organisms (i.e. cross-over, mutation, mating). In contrast, evolutionary
programming models evolution as a process of adaptive behavior of species,
rather than adaptive genetic processing.

8.1. Introduction to evolutionary computing
What is Evolutionary computation? In an attempt to answer this question, a generic
response has been given: An abstraction from the theory of biological evolution
that is used to create optimization procedures or methodologies, implemented in
computer software that are used to solve problems. In evolutionary computation

Page | 5

populations of solutions are evolved to exploit a continuous range of solution while at
the same time maintaining a strong behavioral connection between offspring and their
parents.

Evolutionary programming emerged as an alternative approach to artificial
intelligence. Rather than emulating human neural computation or human
behaviors, evolutionary programming was modeled as a process that generates
organisms of increasing intellect over time. Intelligence was defined, in this
context, as the ability of an organism to achieve goals in a range of environments
and evolution is seen as optimization.

8.2 Genetic Algorithms

Genetic algorithms were formally introduced in the 1970s by John Holland at
University of Michigan. Advances in computing hardware have made them attractive
for various types of optimization problems. In particular, genetic algorithms work
very well on mixed (continuous and discrete), combinatorial problems.

In the basic formulation, a gene is a part of the DNA sequence that encodes
information. Humans roughly have 20500 genes. The DNA sequence is composed
of double-helix of complementary nucleotides: Adenine (A), Cytosine (C), Guanine
(G), Thymine (T) and Uracil (U). In normal spiral DNA the bases form pairs between
the two strands: A with T and C with G.

The two individual strings can get completed by free nucleotides as, in principle, all
information is still available. Bur some modifications can occur during reproduction
processes (transformations) such as: mutations (i.e. substitution, insertion,
deletion) or cross-over.

Page | 6

Such processes create “modified blueprints” of a biological system, which create a
modified organism when transcribed (i.e. read out and build in software terms).
Through “survival of the fittest” only those individuals that have the largest success
survive, yet taking into account that this is not a goal-directed selection.

How can we use such processes in technology?

Searching a large state-space or n-dimensional surface, GAs may offer significant
benefits over more typical search of optimization techniques, such as linear
programming, heuristic, depth-first, breath-first, but they tend to be computationally
expensive.

Page | 7

In another perspective, GAs are adaptive heuristic search algorithms based on the
evolutionary ideas of natural selection and genetics. They represent an intelligent
exploitation of a random search used to solve optimization problems.

Although randomized, GAs are by no means random, instead they exploit
historical information to direct the search into the region of better performance
within the search space.

We can see such an algorithm as a 3-step iterative process accounting for a
stochastic exploration:

GAs are less susceptible to settle in local optima than gradient search methods.
Moreover, due to the fact that they can optimize nonlinear, discontinuous
functions, there is no need to formulate them only for differentiable functions.

Although there are many variations of GAs the core principled algorithm is introduced
in the following section.

 Initialize all possible solutions xi in a population P
 Evaluate f(xi) and select “good” xi in the metric of f
 Repeat

Apply small
modifications

(i.e. cross-over)
on existing
solutions

Select solutions

Recombine
existing

solutions

Page | 8

 for i=0 to k // k = number of children to produce
 select P1/2 parents out of P
 generate xi such through recombination of P1/2 (cross-over)
 mutate xi
 evaluate f(xi)
 add xi to a new population P’

 end
 select new P out of P’
 forget P’

 until fitness “good enough”

In the next section we look at the terminology and specific requirements to design
and implement a GA.

Encoding

A chromosome should in some way contain information about solution that it
represents. A typical way of encoding is a binary string. Each chromosome is
represented by a binary string. Each bit (gene) in the string can represent some
characteristics of the solution. The encoding depends mainly on the solved
problem. For example, one can encode directly integer or real numbers; sometimes
it is useful to encode some permutations. In an ideal case small changes in the
representation should result in small changes in the state, and vice versa. This is
problematic in binary encoding but not in Gray encoding.

Initialization

Page | 9

The population size depends on the nature of the problem. Typically, the initial
population is generated randomly, allowing the span over the entire search space.
To accelerate computation, sometimes, solutions may be "seeded" in areas where
optimal solutions are likely to be found. The size of the initial population determines
the computational complexity and the exploration ability.

Fitness function

It's necessary to be able to evaluate how "good" a potential solution is relative to
other potential solutions. The fitness function is responsible for performing this
evaluation and returning, typically, a positive integer number, or fitness value, that
reflects how optimal the solution is. This is the most important design aspect of a GA.

Selection criteria

An important question is how to select parents for crossover. This can be done in
many ways, but the main idea is to select the better parents in the hope that the
better parents will produce better offspring. In GAs elitism is often used, but other
methods like proportional selection, tournament selection, and rank-based
selection are used. This means, that at least one of a generation's best solution is
copied without changes to a new population, so the best solution can survive to the
succeeding generation.

Typically we can look at this phenomenon from the point of view of a selective
pressure, or how long will it need for the “best” organism to take over? We can
differentiate a low pressure scenario, with very long convergence time but offering
good solutions and a high pressure scenario, with very short convergence time
but offering a non-optimal solution.

Reproduction / mutation operators

After selection an encoding, we can proceed to crossover operation. Crossover
operates on selected genes from parent chromosomes and creates new offspring.
The simplest way how to do that is to choose randomly some crossover point (s)
and copy everything before this point from the first parent and then copy everything
after the crossover point from the other parent.

After a crossover is performed, mutation takes place. Mutation is intended to prevent
falling of all solutions in the population into a local optimum of the solved problem.
Mutation operation randomly changes the offspring resulted from crossover.

Sample applications

Page | 10

 Travelling Salesman Problem

Many problems do not require the optimization of a series of real valued parameters,
but the discovery of an ideal ordered list.

We cannot simply mutate or crossover the chromosome.

One solution would be literal permutation encoding with reorder mutation,
implemented as shown in the following diagram.

Page | 11

Another solution is partially matched crossover (PMX) described as:

Note that cities that are visited twice in one tour are swapped with cities that are visited
twice in the other tour. Only one representative (the one not in the matching section)
of such cities is swapped. Thus tour 1” = b c g f a h e d and tour 2” = c b d e g a f
h.

Page | 3

Contents
Lectures
1. Introduction to Artificial Intelligence and Machine Learning
2. Traditional computation

2.1. Sorting algorithms
2.2. Graph search algorithms

3. Supervised neural computation
3.1. Biological neurons vs. artificial neurons
3.2. Learning in artificial neurons
3.3. From single neurons to neural networks
3.4. Learning in neural networks: Error Backpropagation in Multi-Layer Neural Networks
3.5. Supervised learning: tips and tricks

4. Unsupervised neural computation
4.1. Introduction to unsupervised learning
4.2. Radial Basis Functions
4.3. Vector Quantization
4.4. Kohonen’s Self-Organizing-Maps
4.5. Hopfield Networks

5. Deep Neural Learning
5.1. Fundamentals of Deep Networks
5.2. Common Architectural Principles of Deep Networks
5.3. Building Blocks of Deep Networks.
5.4. Major Architectures of Deep Networks

6. Technical implementations of neural computation
6.1. Recurrent networks
6.2. Time-series prediction
6.3. Support Vector Machines
6.4. Liquid State Machines

7. Reinforcement Learning
7.1. Introduction to Reinforcement Learning
7.2. Q-Learning

8. Evolutionary programming
8.1. Introduction to evolutionary computing
8.2. Genetic Algorithms

9. Fuzzy Inference Systems
9.1. Introduction to Fuzzy Logic
9.2. Fuzzy control systems

10. Online distributed streaming machine learning
10.1. Machine Learning in Real-Time Big Data Analytics

11. Immunological Computation and Artificial Immune Systems
12. Neuromorphic Systems and Spiking Neural Networks

Page | 4

9. Fuzzy Inference Systems

Humans are unconsciously able to address complex, ambiguous, and uncertain
problems thanks to thinking. The thought process is possible because humans do
not need the complete description of the problem since they have the capacity to
reason approximately. Lotfi Zadeh proposed and developed in 1965 a theory of such
approximate reasoning as an approach to modeling uncertainty.

This new theory provided “a logical system which aims at a formalization of
approximate reasoning. In this case it is an extension of many-valued logic.
However the agenda of this theory, Fuzzy Logic (FL) is different from that of the
traditional many-valued logic. Such key concepts in FL as the concept of linguistic
variable, fuzzy if-then rule, fuzzy quantification and defuzzification, inference and
interpolative reasoning, among others, are not addressed in traditional systems.”

FL can be conceptualized as a generalization of classical logic. Modern fuzzy logic
was developed to model those problems in which imprecise data must be used or in
which the rules of inference are formulated in a very general way making use of
diffuse categories.

9.1 Introduction to Fuzzy Logic
In this section we will start with an intuitive introduction to fuzzy logic. In our everyday
language we use a great deal of vagueness and imprecision, that can also be called
fuzziness. We are concerned with how we can represent and manipulate inferences
with this kind of information. Fuzzy sets provide a way that is very similar to the human

reasoning system. But how does human perception work?

If one asks “How comfortable is this room, is it warm or cold?”, most likely a human
will answer “It‘s quite cold here”, “Fairly warm”, or “It is too hot for me”. So, the
characteristics of human's answer will be: imprecise / vague, typically involving
modifier/hedge of linguistic terms (quite, fairly, too, very, etc.), and implies
uncertainty.

Page | 5

We all use vague information and imprecision to solve problems. Hence, our
computational methods should be able to represent and manipulate fuzzy and
statistical uncertainties. But how important is it to be exactly right when a rough answer
will do? It pays off trading between significance and precision - something that humans
have been managing for a very long time!

The imprecision in fuzzy models is generally quite high. However, when precision is apparent,
fuzzy systems are less efficient than more precise algorithms in providing us with the best
understanding of the system. In the following examples, we explain how many industries have
taken advantage of the fuzzy theory.

Page | 6

Mathematical foundations of fuzzy logic rest in fuzzy set theory, which can be seen
as a generalization of classical set (crisp) theory. Fuzziness is a language
concept; its main strength is its vagueness using symbols and defining them.

In 1965 Prof. Lotfi A. Zadeh introduced fuzzy sets, where many degrees of
membership are allowed, and indicated with a number between 0 and 1. The point of
departure for fuzzy sets is simply the generalization of the valuation set from the pair
of numbers {0,1} to all the numbers in [0,1] as depicted in the following diagram.

This is called a membership function and describes fuzzy sets. More precisely,
membership functions are mathematical tools for indicating flexible membership
to a set (fuzzification), modeling and quantifying the meaning of symbols. They can
represent a subjective notion of a vague class, such as chairs in a room, size of

Page | 7

people, and performance among others. In a typical example one, of temperature
measurement, can easily understand the generalization capabilities of fuzzy logic and
the modeling and description of crisp physical quantities.

Fuzzy Logic formalism

Formally, the core idea behind fuzzy sets and fuzzy representation of crisp quantities
can be synthetically depicted in the following diagram.

A fuzzy set A, corresponding to a universe of discourse X, can be represented by
an ordered set of pairs:

A = {(x, μA(x)) | x є X}

Page | 8

A fuzzy set may be discrete or continuous, for example: Universe of discourse: cat
species families, X = {“cat”, “lion”, “tiger”, “leopard”, “cheetah”} and the associated
fuzzy set “HS” for animals with “high-speed”, HS = {(x, μHS(x)) | x є X} = {(cat, 0.1),
(lion, 0.3), (tiger, 0.2), (leopard, 0.5), (cheetah, 0.9)}

Membership functions give numerical meaning to a fuzzy set by mapping crisp
inputs from a specified domain to membership degrees ranging [0,1] (fuzzification).
They can have known analytical formulations: triangular, trapezoidal, Gaussian etc.

Page | 9

The support of a fuzzy set A is the crisp set that contains all the elements of X that
have nonzero membership degrees in A,

supp(A) = { x ∈ X | μA(x) > 0 }

The boundary is the crisp set that contains all the elements of X that have the
membership degrees of 0 < μA(x) < 1 in A,

bnd(A) = { x ∈ X | 0 < μA(x) < 1 }

The core of a normal fuzzy set A is the crisp set that contains all the elements of X
that have the membership grades of 1 in A,

core(A) = { x ∈ X | μA (x) = 1 }

If the support of a normal fuzzy set consists of a single element x0 of X, which has the
property:

supp(A) = core(A) = {x0} this set is called a singleton (see cat HS example).

Alpha cut set Aα is a crisp set of a fuzzy set A, where

Aα = { x ∈ X | μA(x) ≥ α }

Strong alpha cut set Aα is a crisp set of a fuzzy set A, where

Aα = {x ∈ X | μA(x) > α }

Linguistic variables have an identifier for a membership function which define the
partitions (partitioning) of the universe of discourse. This is an application dependent
setting. For example, a variable “speed”, which is going to be used as an input for a
fuzzy control system, might be defined as: S = { very slow, slow, moderate, fast, very
fast } and will partition the universe of discourse as shown in the following figure.

Page | 10

Linguistic variables are used in the fuzzification process to assign a membership
degree for a certain crisp value for each label of a linguistic variable. In our previous
example of speed partitioning:

In order to operate on the fuzzy linguistic variables a fuzzy inference system uses
if-then rules. In the most general form of fuzzy rule is using first order logic and can
aggregate multiple variables and labels that describe physical quantities, as shown in
the next figure.

In general, if there are several input variables x1, x2, …, xn with several logical
connections (i.e. AND, OR), the fuzzy if-then clauses can be written as:

The typical operations with crisp sets and Boolean logic can be extended also to fuzzy
sets by choosing an appropriate operator. There are multiple possibilities to implement

Page | 11

typical conjunction and disjunction operators used to link variables in the premise (i.e.
antecedent) or the conclusions (i.e. consequent).

As previously mentioned fuzzy logic extends classical, bivalent logic, and its operators
have a different effect, as shown in the next comparative diagram.

The basic formulation of fuzzy if-then rules assumes connecting the antecedent and
the consequent using an operation called fuzzy implication or relations. Such
operations are used to model dependencies, correlations or connections between
variables, quantities or attributes. Moreover, they allow a generalization of the
definition of fuzzy set from 2-D space to 3-D space, describing the "degree of
association" of the elements, basically a Cartesian product of two fuzzy sets.

In a basic example, let’s consider the relationship between the color of a fruit, x, and
the grade of maturity, y and the effect of the implication.

Page | 12

A fuzzy inference system is taking decisions are based on testing of all of the rules,
by combining or aggregating them in an inference process. In fuzzy aggregation the
outputs of each rule are combined into a single fuzzy set once for each output variable.
In this process input is the list of output functions returned by the implication process
for each rule whereas the output is one fuzzy set for each output variable.

The typical processing pipeline in a fuzzy system is depicted in the following
diagram.

In order to understand the underlying mechanisms of a fuzzy inference system we
describe the processing pipeline above for a given problem, namely the tipping
problem (adapted from Matlab – Fuzzy toolbox Example).

Page | 13

In this problem we design a fuzzy inference system to compute the tip (output) given
two measures of quality, namely service and food quality. For this limited example we
choose 3 rules combining the input and output variables with the operators previously
introduced.

Once the fuzzy inference system has fired all the rules given the current values of the
input variables the fuzzy value of the output must be brought back to its crisp
representation. The process is called defuzzification.

Page | 14

This process is performed using the membership function of the output variable and
various mechanisms to defuzzify were developed.

In the next section we will look at how to design and implement a fuzzy inference
system for control applications, but before let’s take an overview on existing types of
fuzzy inference systems.

Page | 15

Fuzzy inference systems differ through the operators implementing the process of
implication, aggregation and / or defuzzification. Various types of FIS were developed:
Mamdani FIS, Larsen FIS, Tsukamoto FIS and TSK (Takagi – Sugeno – Kang) FIS.

Page | 16

9.2 Fuzzy control systems

Classic control is based on a detailed I/O function which maps each high-resolution
quantization interval of the input domain into a high-resolution quantization interval of
the output domain. Finding a mathematical expression for this detailed mapping
relationship may be difficult, if not impossible, in many applications.

Fuzzy control is based on an I/O function that maps each very low-resolution
quantization interval of the input domain into a very low-low resolution quantization
interval of the output domain. As there are fuzzy quantization intervals covering the
input and output domains the mapping relationship can be very easily expressed
using the “if-then” formalism. The overlapping of these fuzzy domains and their
linear membership functions will eventually allow to achieve a rather high-resolution
I/O function between crisp input and output variables.

Page | 17

A block diagram of a fuzzy control system is shown in the following diagram.

The fuzzy controller is composed of the following four elements:

• A rule-base (a set of If-Then rules), which contains a fuzzy logic quantification
of the expert’s linguistic description of how to achieve good control.

• An inference mechanism (also called an “inference engine” or “fuzzy
inference” module), which emulates the expert’s decision making in interpreting
and applying knowledge about how best to control the plant.

• A fuzzification interface, which converts controller inputs into information that
the inference mechanism can easily use to activate and apply rules.

• A defuzzification interface, which converts the conclusions of the inference
mechanism into actual inputs for the process.

Page | 18

In the next section we will focus on the design of fuzzy logic controllers through some
worked examples of either benchmark control systems or autonomous navigation for
cars.

Page | 19

Page | 20

Page | 21

In the second worked example we analyze the design of a TSK fuzzy controller. Now
we don’t consider the defuzzification step anymore.

Page | 22

Page | 23

Page | 3

Contents
Lectures
1. Introduction to Artificial Intelligence and Machine Learning
2. Traditional computation

2.1. Sorting algorithms
2.2. Graph search algorithms

3. Supervised neural computation
3.1. Biological neurons vs. artificial neurons
3.2. Learning in artificial neurons
3.3. From single neurons to neural networks
3.4. Learning in neural networks: Error Backpropagation in Multi-Layer Neural Networks
3.5. Supervised learning: tips and tricks

4. Unsupervised neural computation
4.1. Introduction to unsupervised learning
4.2. Radial Basis Functions
4.3. Vector Quantization
4.4. Kohonen’s Self-Organizing-Maps
4.5. Hopfield Networks

5. Deep Neural Learning
5.1. Fundamentals of Deep Networks
5.2. Common Architectural Principles of Deep Networks
5.3. Building Blocks of Deep Networks.
5.4. Major Architectures of Deep Networks

6. Technical implementations of neural computation
6.1. Recurrent networks
6.2. Time-series prediction
6.3. Support Vector Machines
6.4. Liquid State Machines

7. Reinforcement Learning
7.1. Introduction to Reinforcement Learning
7.2. Q-Learning

8. Evolutionary programming
8.1. Introduction to evolutionary computing
8.2. Genetic Algorithms

9. Fuzzy Inference Systems
9.1. Introduction to Fuzzy Logic
9.2. Fuzzy control systems

10. Online distributed streaming machine learning
10.1. Machine Learning in Real-Time Big Data Analytics

11. Immunological Computation and Artificial Immune Systems
12. Neuromorphic Systems and Spiking Neural Networks

Page | 4

10. Online distributed streaming machine learning

During the day when you are reading this, more data will be produced than the
amount of information contained in all printed material in the world. The Internet Data
Center estimated the growth of data to be of a factor of 300 between 2005 and 2020,
expecting to raise from 130 Exabytes to 20,000 Exabytes.

Big Data is one of the most popular terms nowadays, but Big Data is not only about
the volume. Much of the data is received in real time and is most valuable at the
time of arrival. For example, we want to detect shares market trends as soon as
possible; a service operator wants to detect failures from logs within a seconds; and a
news site may want to train their model to show users content which they are
interesting in as shown extensively in Figure 1.

Figure 1 Big Data Landscape

Big data are often characterized like Volume + Velocity + Variety. Volume describes
the quantity of data, it is the size of the data which determines the value and potential
of the data. Variety is the next aspect of Big Data. It describes range of data types
and sources. The term ‘velocity’ in the context refers to the speed of generation of
data or how fast the data is generated and processed to meet the demands. This is
shown in Figure 2.

10.1 Real Time Big Data Analytics

We are going to focus on stream processing or sometimes referenced as fast data,
where velocity is the key. The demand for stream processing is increasing. Immense

Page | 5

amounts of data have to be processed fast from a rapidly growing set of disparate
data sources. This pushes the limits of traditional data processing infrastructures.
These stream-based applications include trading, social networks, Internet of
Things, system monitoring, and many other examples.

Figure 2 Velocity in Big Data

10.2 Stream Processing Engines

Stream processing paradigm simplifies parallel software and hardware by restricting
the parallel computation that can be performed.
Given a sequence of data (a stream), a series of operations (functions) is applied
to each element in the stream, in a declarative way, we specify what we want to
achieve and not how, as shown in Figure 3.

Figure 3 Stream processing paradigm

Page | 6

In general, stream processing systems support a large class of applications in which
data are generated from multiple sources and are pushed asynchronously to
servers which are responsible for processing. Therefore, stream processing
applications are usually deployed as continuous jobs that run from the time of their
submission until their cancellation.

Many applications in several domains such as telecommunications, network security
and large scale sensor networks require online processing of continuous data flows.
They produce very high loads that requires aggregating the processing capacity
of many nodes.

Rather than processing stored data like in traditional database systems, stream
processing engines process data on-the-fly. This is due to the amount of input that
discourages persistent storage and the requirement of providing prompt results.
Queries of streaming application are generally continuous and stateful. Once a
query is registered, it starts processing events and only stops when the system
terminates or the query is deregistered from the system. Queries typically maintain
state such as aggregates of windows or local variables. Query state is kept on the
same node that executes the query.

At the most basic level, shown in Figure4, a stream processor, such as Flink, is
made up of:

• Data source: Incoming data that stream engine processes
• Transformations: The processing step, when the stream processor modifies

incoming data
• Data sink: Where the processing engine sends data after processing

Figure 4 Stream processing paradigm

Aggregating events (e.g., counts, sums) works differently on streams because it is
impossible to count all (unbounded).

Figure 5 Stream aggregations

Page | 7

Stream processing and windowing makes it easy to compute accurate results over
streams where events arrive out of order and where events may arrive delayed.

Figure 6 Stream windowing mechanisms

Windowing based on time, count, and data-driven windows. Windows can be
customized with flexible triggering conditions to support sophisticated streaming
patterns.

When executed, stream processor engine (e.g. Flink) programs are mapped to
streaming dataflows, consisting of streams and transformation operators. Each
dataflow starts with one or more sources and ends in one or more sinks. The dataflows
resemble arbitrary directed acyclic graphs (DAGs).

Figure 7 Stream processor execution

Page | 8

For distributed execution, Flink for example, chains operator subtasks together into
tasks. Each task is executed by one thread. Chaining operators together into tasks
is a useful optimization: it reduces the overhead of thread-to-thread handover and
buffering, and increases overall throughput while decreasing latency.

Figure 7 Stream processor execution
Figure 8 Distributing stream processing

A stream processing engine exploits in-memory data streaming, and natively
executes iterative processing algorithms which are common in ML. This allows
data scientists to test their models locally and using subsets of data, and then use
the same code to run their algorithms at a much larger scale in a cluster setting.

10.3 Machine Learning in Real-Time Big Data Analytics

In order to deal with evolving data streams, the model learned from the streaming
data must be able to capture up-to-date trends and transient patterns in the stream.
To do this, as we revise the model by incorporating new examples, we must also
eliminate the effects of outdated examples representing outdated concepts.

Dealing with time-changing data requires strategies for detecting and quantifying
change, forgetting stale examples, and for model revision. Fairly generic
strategies exist for detecting change and deciding when examples are no longer

Page | 9

relevant. Model revision strategies, on the other hand, are in most cases method-
specific.

A good idea is to encapsulate all the statistical calculations having to do with
detecting change and keeping updated statistics from a stream in an abstract data
type that can then be used to replace the counters and accumulators that typically
all machine learning and data mining algorithms use to make their decisions,
including when change has occurred.

Big Data Stream Learning is more challenging than batch or offline learning, since
the data may not preserve the same distribution over the lifetime of the stream.
Moreover, each example coming in a stream can only be processed once, or needs
to be summarized with a small memory footprint, and the learning algorithms must
be efficient.

Figure 9 Big Data Stream Learning – A generic view

In order to deal with evolving data streams, the model learnt from the streaming data
must capture up-to-date trends and transient patterns in the stream. Updating the
model by incorporating new examples, we must also eliminate the effects of
outdated examples representing outdated concepts.

Figure 10 Changes in data streams

Page | 10

How to compute the entropy of a collection of infinite data, where the domain of
the variables can be huge and the number of classes of objects is not known a
priori?

How to maintain the k-most frequent items in a retail data warehouse with 3 TB of
data, 100s of GB of new sales records updated daily with 1000000s different items?

What becomes of statistical computations when the learner can only afford one
pass through each data sample because of time and memory constraints; when
the learner has to decide on-the-fly what is relevant and process it and what is
redundant and could be discarded?

Most strategies use variations of the sliding window technique: a window is
maintained that keeps the most recently read examples, and from which older
examples are dropped according to some set of rules.

Figure 11 Sliding window mechanisms

The contents of the sliding window can be used for the three tasks:

• to detect change (e.g., by using some statistical test on different sub-windows),
• to obtain updated statistics / criteria from the recent examples, and
• to have data to rebuild or update the model after data has changed.

Figure 12 Sliding window processing

Page | 11

Normally, the user is caught in a tradeoff without solution:

• a small size (so that the window reflects accurately the current distribution)
• a large size (so that many examples are available to work on, increasing

accuracy in periods of stability).

Figure 13 Distribution change in stream processing

Currently, it has been proposed to use windows of variable size.

10.4 Vertical Hoeffding Tree Classifiers

Most conventional data mining techniques have to be adapted to run in a
streaming environment, because of the underlying resource constraints in terms
of memory and running time. Furthermore, the data stream may often show concept
drift, because of which adaptation of conventional algorithms becomes more
challenging. One such important conventional data mining problem is that of
classification.

In the classification problem, we attempt to model the class variable on the basis
of one or more feature variables. While this problem has been extensively studied
from a conventional mining perspective, it is a much more challenging problem in the
data stream domain.

In this section we introduce and illustrate a method for developing decision trees
algorithms that can adaptively learn from data streams that change over time. We
take the Hoeffding Tree learner, an incremental decision tree inducer for data
streams, and use as a basis it to build two new methods that can deal with
distribution and concept drift. In the basic formulation a decision tree functionality
is described in Figure 14.

Page | 12

Figure 14 Decision tree processing and tree induction process

Given a set of training examples belonging to n different classes, a classifier
algorithm builds a model that predicts for every unlabeled instance x the class C to
which it belongs, synthetically depicted in Figure 15.

 Figure 15 Classification in streaming

Page | 13

The basic decision tree can be adapted for streaming operation, as shown in Figure
16, and the core principle applied to evolving data, by modifying the number of
sufficient statistics and decision at the split level.

Figure 16 Decision tree for streaming classification and tree induction

Figure 17 Decision tree for streaming classification using Vertical Hoeffding Trees

Page | 14

10.5 Adaptive Model Rules Regressors

Given a set of training examples with a numeric label, a regression algorithm builds
a model that predicts for every unlabeled instance x the value y=ƒ(x) with high
accuracy.

Figure 18 Typical regression problem

Regression analysis is a technique for estimating a functional relationship between
a dependent variable and a set of independent variables. It has been widely
studied in statistics, pattern recognition, machine learning and data mining. The most
expressive data mining models for regression are model trees and regression
rules.

Model trees and model rules are among the most performant ones. Trees and rules
do automatic feature selection, being robust to outliers and irrelevant features;
exhibit high degree of interpretability; and structural invariance to monotonic
transformation of the independent variables. One important aspect of rules is
modularity: each rule can be interpreted per se.

The AMRules algorithm, is one of the first one-pass algorithm for learning
regression rule sets from time-evolving streams.

Figure 19 Basics Adaptive Model Rules

The AMRules algorithm is a one-pass algorithm, able to adapt the current rule set to
changes in the process generating examples. It is able to induce ordered and

Page | 15

unordered rule sets, where the consequent of a rule contains a linear model
trained with the perceptron rule, for example.

Figure 20 Vertical and Horizontal Adaptive Model Rules

The experimental results point out that, in comparison to ordered rule sets, unordered
rule sets are more competitive in terms of performance (MAE and RMSE). AMRules
is competitive against batch learners even for medium sized datasets.

A huge advantage of decision rules is comprehensibility, required in many
business decision making applications. We begin by pipelining the processing of
each instances into two steps: training and predicting and assigning these steps to
learner and model aggregator processors in VAMR. This approach has proved to
increase the throughput for “complex” datasets. Besides, VAMR also provides
memory scalability as the memory consumption of the model (the rule set) is
spread among multiple learners. However, VAMR is not scalable in terms of
throughput due to the bottleneck at the single model aggregator. To address this issue,
the HAMR, an extended version of VAMR with multiple replicated model
aggregators. HAMR is shown to be scalable as it can improve the throughput
proportionally to the number of model aggregators while maintaining good accuracy.

10.6 Perceptrons in streaming

Recalling from the previous chapters, a perceptron is basically a linear binary
classifier. Its input is a vector x = [x1, x2…, xd] with real-valued components.
Associated with the perceptron is a vector of weights w = [w1, w2…, wd], also with
real-valued components. Each perceptron has a threshold θ. The output of the
perceptron is +1 if w.x > θ, and the output is −1 if w.x < θ. The special case where w.x
= θ will always be regarded as “wrong”. The weight vector w defines a hyperplane
of dimension d−1 – the set of all points x such that w.x = θ. Points on the positive side
of the hyperplane are classified +1 and those on the negative side are classified −1. A
perceptron classifier works only for data that is linearly separable, in the sense

Page | 16

that there is some hyperplane that separates all the positive points from all the
negative points. If there are many such hyperplanes, the perceptron will converge to
one of them, and thus will correctly classify all the training points. If no such
hyperplane exists, then the perceptron cannot converge to any particular one. For
a regression task the perceptron model and algorithms is presented in Figure 21, along
with the stochastic gradient descent (SGD) algorithm used to train it.

 Figure 21 Perceptron learning for regression in streaming

The extension from the basic model to a stream classifier is depicted in Figure 22
along with the simple algorithmic modifications to allow it to operate in evolving data
streams.

Figure 22 Perceptron learning for classification in streaming

Induced by ubiquitous scenarios finite training sets, static models, and stationary
distributions must be completely redefined.

Page | 17

The characteristics of the streaming data entail a new vision due to the fact that:

• Data are made available through unlimited streams that continuously flow,
eventually at high speed, over time;

• The underlying regularities may evolve over time rather than being stationary;
• The data can no longer be considered as independent and identically

distributed;
• The data are now often spatially as well as time situated.

Data streams are a computational challenge to data mining and machine learning
problems because of the additional algorithmic constraints created by the large volume
and velocity of data. In addition, the problem of temporal locality leads to a number of
unique mining challenges in the data stream case, which we tried to cover in the
present chapter of the lecture.

Page | 3

Contents
Lectures
1. Introduction to Artificial Intelligence and Machine Learning
2. Traditional computation

2.1. Sorting algorithms
2.2. Graph search algorithms

3. Supervised neural computation
3.1. Biological neurons vs. artificial neurons
3.2. Learning in artificial neurons
3.3. From single neurons to neural networks
3.4. Learning in neural networks: Error Backpropagation in Multi-Layer Neural Networks
3.5. Supervised learning: tips and tricks

4. Unsupervised neural computation
4.1. Introduction to unsupervised learning
4.2. Radial Basis Functions
4.3. Vector Quantization
4.4. Kohonen’s Self-Organizing-Maps
4.5. Hopfield Networks

5. Deep Neural Learning
5.1. Fundamentals of Deep Networks
5.2. Common Architectural Principles of Deep Networks
5.3. Building Blocks of Deep Networks.
5.4. Major Architectures of Deep Networks

6. Technical implementations of neural computation
6.1. Recurrent networks
6.2. Time-series prediction
6.3. Support Vector Machines
6.4. Liquid State Machines

7. Reinforcement Learning
7.1. Introduction to Reinforcement Learning
7.2. Q-Learning

8. Evolutionary programming
8.1. Introduction to evolutionary computing
8.2. Genetic Algorithms

9. Fuzzy Inference Systems
9.1. Introduction to Fuzzy Logic
9.2. Fuzzy control systems

10. Online distributed streaming machine learning
10.1. Machine Learning in Real-Time Big Data Analytics

11. Immunological Computation and Artificial Immune Systems
12. Neuromorphic Systems and Spiking Neural Networks

Page | 4

11. Immunological Computation and Artificial Immune Systems

Basics

The vertebrate immune system (the one which has been used to inspire the vast
majority of Artificial Immune Systems to date) is composed of diverse sets of cells
and molecules that work in collaboration with other systems, such as the neuronal
and endocrine, to maintain a steady state of operation within the host: this is termed
homeostasis.

The role of the Biological Immune System (BIS) is typically viewed as one of
protection from infectious agents such as viruses, bacteria, fungi and other
parasites. On the surface of these agents are antigens that allow the identification
of the invading agents (pathogens) by the immune cells and molecules, which in
turn provoke an immune response.

There are two basic types of immunity, innate and adaptive. Innate immunity is
not directed towards specific invaders into the body, but against any pathogens that
enter the body. The innate immune system plays a vital role in the initiation and
regulation of immune responses, including adaptive immune responses.
Specialized cells of the innate immune system evolved so as to recognize and bind to
common molecular patterns found only in micro-organisms. However, the innate
immune system is by no means a complete solution to protecting the body.

Adaptive, or acquired immunity, is directed against specific invaders, and cells
are modified by exposure to such invaders. The adaptive immune system mainly
consists of lymphocytes, which are white blood cells, more specifically B and T-cells.
These cells aid in the process of recognizing and destroying specific substances.
Any substance that is capable of generating such a response from the lymphocytes
is called an antigen or immunogen. Antigens are not the invading microorganisms
themselves; they are substances such as toxins or enzymes in the microorganisms
that the immune system considers foreign. Adaptive immune responses are
normally directed against the antigen that provoked them and are said to be antigen-
specific.

One of the main capabilities of the immune system is to distinguish own body cells
from foreign substances, which is called self / non-self discrimination. In general,
the BIS is capable of recognizing the dangerous elements and deciding an appropriate
response while tolerating self-molecules and ignoring many harmless substances.

The immune system is a collection of organs, cells, and molecules responsible for
dealing with potentially harmful invaders; it also has other functionalities in the body,
as shown in the next extended diagram.

Page | 5

The organs, which constitute the immune system, can be classified into central
lymphoid organs and peripheral lymphoid organs. The purpose of central lymphoid
organs is to generate and assist mature immune cells (lymphocytes). Such organs
include the bone marrow and the thymus. However, peripheral lymphoid organs
(e.g. lymph nodes, the spleen) facilitate the interaction between lymphocytes and
antigens, as the antigen concentration increases in these organs.

Bone Marrow In an abstract sense, naive immune cells are initially generated in the
bone marrow. These stem cells divide into either mature immune cells (to perform
immunological function) or precursors of cells that migrate out of the bone marrow
to continue their maturation process elsewhere. B-cells are produced in the bone
marrow along with other red blood cells and platelets.

Thymus In simple terms, the function of the thymus is to produce mature T cells.
Through a maturation process, sometimes referred to as “thymic education”, T
cells that are beneficial to the immune system are kept, whereas those T cells that
might cause a detrimental autoimmune response are eliminated.

Spleen The spleen is an organ, which is made up of B cells, T cells, macrophages,
dendritic cells, natural killer cells, and red blood cells. An immune response is initiated
when macrophages or dendritic cells present the antigen to the appropriate B or T
cells. This organ can be thought of as an immunological “conference center”.

Page | 6

Lymph Nodes The function of lymph nodes is to act as an immunologic filter for the
fluid known as lymph. Lymph nodes are found throughout the body and they are
mostly composed of T cells, B cells, dendritic cells, and macrophages.

The immune system is composed of a variety of cells and molecules, which interact
among themselves to achieve appropriate immunological responses (biological
defense).

Lymphocytes, T Lymphocytes, and B Lymphocytes White blood cells, also called
lymphocytes, are very important constituents of the immune system. These cells are
produced in the bone marrow, circulate in the blood and lymph system, and reside
in various lymphoid organs to perform immunological functions. The primary
lymphoid organs provide sites where lymphocytes mature and become antigenically
committed. B and T cells constitute the major population of lymphocytes.

T cells are specialized cells of the immune system, which are matured in the thymus.
B cells are another important class of immune cells, which can recognize particular
antigens. There are billions of these cells circulating the body, constituting an effective
and distributed anomaly detection and response system. Antibodies (Abs) are a
particular kind of molecules, called immunoglobulins found in the blood and
produced by mature B cells, also known as plasma cells.

Macrophages Macrophages are specialized cells, which engulf large particles such
as bacteria, yeast, and dying cells by a process called phagocytosis. When a
macrophage ingests a pathogen, the pathogen becomes trapped in a food vacuole,
which then fuses with a lysosome. Enzymes and toxic oxygen compounds digest the
invader within the lysosome.

Dendritic cells Dendritic cells are immune cells that form part of the mammal
immune system. These cells are present in small amounts in those tissues that are
in contact with the external environment such as the skin and the inner covering of
nose, lungs, stomach, and intestines.

Immune System Dynamics

The dynamics of the BIS are provided by a series of processes.

Immune Recognition: Matching and Binding

Several immunological processes require an element (cell or molecule) of the immune
system to recognize the presence of another element. T cell recognition is based on
the complementarity between the binding region of the cell molecule and the receptor.
For instance, antigens are detected when a molecular bond is established between
the antigen and receptors on the surface of B cells, as shown in the next figure.

Page | 7

Because of the large size and complexity of most antigens, only parts of the antigen,
discrete sites called epitopes, get bound to B cell receptors. Multiple receptors bind
to an antigen with varying affinity, that is, the more complementary the structures of
the epitope and the B cell receptor are, the more likely for a stronger bond to occur.

The response to the presence of antigens is composed of two interlinked
mechanisms: innate immunity and adaptive immunity.

When the immune system has been exposed to an antigen for a second time, it
reacts quickly and rigorously (measured by the production of antibodies). This is
called secondary immune response, in contrast to the first encounter with the
antigen, in which a slower response, called primary immune response occurs, as
shown in the following diagram.

This augmented antibody response is due to the existence of memory cells, which
rapidly produce plasma cells on antigen stimulation. Thus, the immune system

Page | 8

learns from encounters with antigens to improve its response in subsequent
encounters, producing a so-called immunological memory.

Immunological computation
From the point of view of information processing, the biological immune system
exhibits many interesting characteristics; some of which are:

Pattern matching The immune system is able to recognize specific antigens and
generate appropriate responses. This is accomplished by a recognition
mechanism based on chemical binding of receptors and antigens. This binding
depends on their molecular shapes and electrostatic charges.

Feature extraction Generally, immune receptors do not bind to a complete antigen,
but rather to portions of it (peptides). Accordingly, the immune system can recognize
an antigen just by matching segments of it. Peptides are presented to lymphocyte
receptors by Antibody Presenting Cells (APC). Therefore, such APCs act as filters
that can extract the important information and remove the molecular noise.

Learning and memory A major feature of the adaptive immune system is that it is
able to learn through its interaction with the environment. The first time an antigen
is detected, a primary response is induced, which includes proliferation and
subsequent reduction of lymphocytes. Some of these lymphocytes are kept as
memory cells. The next time the same antigen is detected, memory cells generate
a faster and more intense response (secondary response). Accordingly, memory
cells work as an associative (highly) distributed memory.

Diversity Clonal selection and hypermutation mechanisms are constantly testing
different detector configuration for known and unknown antigens. This is a highly
combinatorial process that explores the space of possible configurations looking
for close-to-optimum receptors that can cope with all types of antigens. Exploration
is balanced with exploitation by favoring the reproduction of promising
individuals.

Distributed processing Unlike the nervous system, the immune system is not
centrally controlled. Detection and response can be executed locally and
immediately without communicating with any central organ. This distributed
behavior is accomplished by billions of immune molecules and cells that circulate
around the blood and lymph systems and are capable of making decisions in a local
collaborative environment.

Self-regulation Depending on the severity of the attack, response of the immune
system can range from very light and almost imperceptible to very strong. A stronger
response uses a lot of resources to help ward off the attacker. Once the invader is

Page | 9

eliminated, the immune system regulates itself to stop the delivery of new resources
and release the used ones.

Self-protection By protecting the body as a whole, the immune system is also
protecting itself. It means that there is no other additional system to protect the
immune system; hence, it can be said that the immune system is self-defending.

Given these features and there have been developed a series of Immunity-Based
Computational Models and based on the Specific Immunological Concepts we
introduced in the Basics section. These are summarized in the following table with
references to seminal work.

Common terminologies that are used in most immune algorithms and their
corresponding terms used in machine learning are listed in the following table.

Page | 10

Artificial Immune Systems

Artificial Immune Systems (AIS) is a diverse area of research that attempts to bridge the
divide between immunology and engineering and are developed through the application of
techniques such as mathematical and computational modeling of immunology,
abstraction from those models into algorithm (and system) design and implementation in
the context of engineering. AIS has become known as an area of computer science and
engineering that uses immune system metaphors for the creation of novel solutions to
problems.

In this section we outline a few of the basic immune algorithms. We provide pseudocode
and an outline description.

Algorithms

Negative Selection

The process of deleting self-reactive lymphocytes is termed clonal deletion and is
carried out via a mechanism called negative selection that operates on lymphocytes
during their maturation. For T-cells this mainly occurs in the thymus, which provides
an environment rich in antigen presenting cells that present self-antigens. Immature
T-cells that strongly bind these self-antigens undergo a controlled death (apoptosis).
Thus, the T-cells that survive this process should be unreactive to self-antigens. The
property of lymphocytes not to react to the self is called immunological tolerance

Negative selection algorithms are inspired by the main mechanism in the thymus that
produces a set of mature T-cells capable of binding only non-self antigens. The first
negative selection algorithm was proposed by Forrest et al (1994) to detect data
manipulation caused by a virus in a computer system. The starting point of this
algorithm is to produce a set of self-strings, S, that define the normal state of the
system. The task then is to generate a set of detectors, D, that only bind/recognize the
complement of S. These detectors can then be applied to new data in order to classify
them as being self or non-self, thus in the case of the original work by Forrest et al ,
highlighting the fact that data has been manipulated. The algorithm of Forrest et
al produces the set of detectors via the process outlined in below.

Page | 11

Clonal Selection

According to Burnet's 1959 clonal selection theory, the immune system repertoire
undergoes a selection mechanism during the lifetime of the individual. The theory
states that on binding with a suitable antigen, activation of lymphocytes occurs. Once
activated, clones of the lymphocyte are produced expressing identical receptors to the
original lymphocyte that encountered the antigen. Thus a clonal expansion of the
original lymphocyte occurs.

This ensures that only lymphocytes specific to an activating antigen are produced in
large numbers. The clonal selection theory also stated that any lymphocyte that have
antigen receptors specific to molecules of the organism's own body must be deleted
during the development of the lymphocyte. This ensures that only antigen from
a pathogen might cause a lymphocyte to clonally expand and thus elicit a destructive
adaptive immune response. In this sense, the immune system can be viewed as a
classifier of antigens into either self-antigen or non-self antigen, with non-self antigen
assumed to be from a pathogen and thus needs to be removed from the body.

During the clonal expansion of B-cells (but not T-cells), the average antibody affinity
increases for the antigen that triggered the clonal expansion. This phenomenon is
called affinity maturation, and is responsible for the fact that upon a subsequent
exposure to the antigen, the immune response is more effective due to the antibodies
having a higher affinity for the antigen. Affinity maturation is caused by a somatic
hypermutation and selection mechanism that occurs during the clonal expansion of B-
cells. Somatic hypermutation alters the specificity of antibodies by introducing random
changes to the genes that encode for them.

 The clonal selection theory has been used as inspiration for the development of AIS
that perform computational optimization and pattern recognition tasks. In particular,
inspiration has been taken from the antigen driven affinity maturation process of B-
cells, with its associated hypermutation mechanism. These AIS also often utilize the
idea of memory cells to retain good solutions to the problem being solved. In de Castro
and Timmis' book, they highlight two important features of affinity maturation in B-cells
that can be exploited from the computational viewpoint. The first of these is that the
proliferation of B-cells is proportional to the affinity of the antigen that binds it, thus the
higher the affinity, the more clones are produced. Secondly, the mutations suffered by
the antibody of a B-cell are inversely proportional to the affinity of the antigen it binds.
Utilizing these two features, de Castro and Von Zuben developed one of the most
popular and widely used clonal selection inspired AIS called CLONALG, which has
been used to perform the tasks of pattern matching and multi-modal function
optimization.

When applied to pattern matching, a set of patterns, S, to be matched are considered
to be antigens. The task of CLONALG is to then produce a set of memory antibodies,
M, that match the members in S. This is achieved via the algorithm outlined below.

Page | 12

Immune Networks

In 1974, Jerne proposed an immune network theory to help explain some of the
observed emergent properties of the immune system, such as learning and memory.
The premise of immune network theory is that any lymphocyte receptor within an
organism can be recognized by a subset of the total receptor repertoire. The receptors
of this recognizing set have their own recognizing set and so on, thus an immune
network of interactions is formed. Immune networks are often referred to
as idiotypic networks. In the absence of foreign antigen, Jerne concluded that the
immune system must display a behavior or activity resulting from interactions with
itself, and from these interactions immunological behavior such as tolerance and
memory emerge.

Page | 13

Real-world Applications

Immunological computation (IC) techniques (or artificial immune systems) have
been used as a problem solver in a wide range of domains such as optimization,
classification, clustering, anomaly detection, machine learning, adaptive
control, and associative memories.

They have also been used in conjunction with other methods (hybridized) such as
genetic algorithms (GAs), neural networks, fuzzy logic, and swarm intelligence. IC
includes real-world applications of computer security, fraud detection, robotics, fault
detection, data mining, text mining, image and pattern recognition, bioinformatics,
games, scheduling, etc.

Methodology of applying AIS

To apply an immunity-based model to solve a particular problem in a specific domain,
one should select the immune algorithm depending on the type of problem that needs
to be solved.

Accordingly, the first step should be to identify the elements involved in the problem
and how they can be modeled as entities in a particular AIS. To encode such entities,
a representation scheme for these elements should be chosen, such as a string
representation, real-valued vector, or hybrid representation.

Subsequently, appropriate affinity/distance measures, which are to be used to
determine corresponding matching rules, should be defined.

The next step should be to decide which AIS will be better to generate a set of
suitable entities that can provide a good solution to the problem at hand. The
following diagram shows the necessary steps to solve problems using an
immunological approach.

Computer security seems to be analogous to the biological defense in many
respects; thus we can learn a lesson from the immune system to develop digital

Page | 14

immunity. Majority of AIS works have been devoted to using some immunological
metaphor for developing digital defense systems. AISs used varied notions of data
protection and anomaly to provide a general-purpose protection system to augment
current computer security systems. The security of computer systems depends on
activities such as detecting unauthorized use of computer facilities, maintaining the
integrity of data files, and preventing the spread of computer viruses, following a
scheme as the one shown in the following diagram.

Robot control works focused on the development of a dynamic decentralized
consensus-making mechanism based on the “immune network theory.” They
attempted to create a mechanism by which a single, self-sufficient autonomous robot,
called the immunoid, could perform the task of collecting various amounts of garbage
from a constantly changing environment.

For the immunoid to make the best decision, it detects antigens and matches the
content of the antigen with a selection of all the antibodies that it possesses. Their
model included the concepts of “dynamics,” responsible for the variation of the
concentration level of antibodies, and “metadynamics,” which maintained the
appropriate repertoire of antibodies.

The authors used the metaphors of antibodies, which were potential behaviors of the
immunoid; antigens corresponded to environmental inputs such as existence of
garbage, wall, and home bases, as shown in the following diagram.

Page | 15

The field of fault diagnosis needs to accurately predict or recover from faults
occurring in plants, machines such as refrigeration systems, communications such as
telephone systems, and transportations such as aircrafts.

Active diagnosis continually monitors for consistency between the current states of the
system with respect to the normal state. Each sensor can be equated with a B cell,
connected through the immune network with each sensor maintaining a time-variant
record of sensory reliability, thus creating a dynamic system.

An AIS technique was applied to refrigerated cabinets in supermarkets to detect the
early symptoms of icing up.

An aircraft fault-detection system, called multilevel immune learning detection (MILD),
was developed to detect a broad spectrum of known as well as unforeseen faults.
Empirical study was conducted with datasets collected through simulated failure
conditions using National Aeronautics and Space Administration (NASA) Ames C-17
flight simulator. Three sets of in-flight sensory information—namely, body-axes roll
rate, pitch rate, and yaw rate were considered to detect five different simulated faults:
one for engine, two for the tails, and two for the wings. The MILD implemented a real-
valued negative selection (RNS) algorithm, where a small number of specialized
detectors (as signatures of known failure conditions) and a set of generalized detectors
(for unknown or possible faults) are generated.

Page | 16

Researchers argued that the immunological memory is a member of the family of
sparsely distributed memories, and it derives associative and robust properties
from a sparse and distributed nature of sampling. The following figure illustrates the
formation of immune memory (as the concentration level of various immune cells)
during the primary and secondary responses.

Another interesting application of AIS is in gaming. More precisely, for example, to
the problem of playing knots and crosses. In this system, each B cell corresponded to
a particular board state containing a nine-digit antibody. The good moves from one
state to another meant that those two B cells would have strong affinity or a connection
in the B cell network. Later, this group also applied this algorithm to the domain of
case-based reasoning. In this system, each case is represented by a B cell object and
the case memory is built with the B cell network, with similar cases being linked
together. The memory was self-organizing in nature.

In a highly relevant AIS application the CLONALG algorithm was used for software
testing. Generated test datasets are evaluated using the mutation testing adequacy
criteria and are used to direct the search of new tests. Mutation testing generates
versions of a program containing simple faults and then finds tests to indicate the
program’s symptoms. The developed immune system for mutation testing is based on
the clonal selection algorithm.

Page | 3

Contents
Lectures
1. Introduction to Artificial Intelligence and Machine Learning
2. Traditional computation

2.1. Sorting algorithms
2.2. Graph search algorithms

3. Supervised neural computation
3.1. Biological neurons vs. artificial neurons
3.2. Learning in artificial neurons
3.3. From single neurons to neural networks
3.4. Learning in neural networks: Error Backpropagation in Multi-Layer Neural Networks
3.5. Supervised learning: tips and tricks

4. Unsupervised neural computation
4.1. Introduction to unsupervised learning
4.2. Radial Basis Functions
4.3. Vector Quantization
4.4. Kohonen’s Self-Organizing-Maps
4.5. Hopfield Networks

5. Deep Neural Learning
5.1. Fundamentals of Deep Networks
5.2. Common Architectural Principles of Deep Networks
5.3. Building Blocks of Deep Networks.
5.4. Major Architectures of Deep Networks

6. Technical implementations of neural computation
6.1. Recurrent networks
6.2. Time-series prediction
6.3. Support Vector Machines
6.4. Liquid State Machines

7. Reinforcement Learning
7.1. Introduction to Reinforcement Learning
7.2. Q-Learning

8. Evolutionary programming
8.1. Introduction to evolutionary computing
8.2. Genetic Algorithms

9. Fuzzy Inference Systems
9.1. Introduction to Fuzzy Logic
9.2. Fuzzy control systems

10. Online distributed streaming machine learning
10.1. Machine Learning in Real-Time Big Data Analytics

11. Immunological Computation and Artificial Immune Systems
12. Neuromorphic Systems and Spiking Neural Networks

Page | 4

12. Neuromorphic Systems and Spiking Neural Networks

Basics of neuromorphic systems

Neuromorphic engineering is concerned with the design and fabrication of artificial
neural systems whose architecture and design principles are based on those of
biological nervous systems. Neuromorphic systems of neurons and synapses can be
implemented in the electronic medium CMOS (complementary metal oxide
semiconductor) using hybrid analog/digital VLSI (very large-scale integrated)
technology.

The concept roots at Caltech during the mid-1980s, this time in the research of Carver
Mead, who had already made major conceptual contributions to the design and
construction of digital VLSI systems. He recognized that the use of transistors for
computation had changed very little from the time when John Von Neumann first
proposed the architecture for the programmable serial computer.

The design of biological neural computation is very different from that of modern
computers. Neuronal networks process information using energy-efficient,
asynchronous, event-based methods. Biology uses self-construction, self-repair, and
self-programming, and it has learned how to flexibly compose complex behaviors from
simpler elements. Of course, these biological abilities are not yet understood. But they
offer an attractive alternative to conventional technology and have enormous
consequences for future artificial information processing and behavior systems.

The challenge for neuromorphic engineering is to explore the methods of biological
information processing in a practical electrical engineering context.

Digital and Analog in Neuromorphic VLSI Systems

The majority of integrated circuits represent numbers as binary digits. Binary digits are
used because it is possible to standardize the behavior of transistors so that their state
can be determined reliably to a single bit of accuracy. The reliable bits can then be
combined to encode variables to an arbitrarily high precision.

For many problems, particularly those in which the input data are ill-conditioned and
the computation can be specified in a relative matter, biological solutions are many
orders of magnitude more effective than those that engineers have been able to
implement using digital methods. This advantage is due principally to biology’s use of
elementary physical phenomena as computational primitives and to the representation
of information by the relative values of analog signals rather than by the absolute
values of digital signals. Typically, it is this style of processing that neuromorphic
engineers explore. Their systems are large collections of communicating
computational primitives implemented either in analog or, more commonly, in hybrid
analog–digital circuits.

Page | 5

Neurons in Silicon

One of the central goals of neuromorphic engineering is to capture the computational
principles of neurons and their networks in hardware. A cornerstone of this quest has
been the development over the last decade of hybrid analog–digital VLSI neurons,
together an infrastructure for composing networks of these neurons. It is now possible
to assemble quite complex systems of such neurons.

Integrate-and-Fire Models

Neurons communicate by pulses (or spikes) that propagate along electrically lossy
point-to-point wires that are the axons. Real neurons have a complex morphology and
even more complex biophysics, whose full emulation is beyond the reach of present
electronic technology. Nevertheless, the integrate-and-fire neuron (I&F), which is a
bold simplification of real neurons, has proved to have significant explanatory power
in understanding the behavior of neuronal networks both in theory and simulation. A
Hardware depiction of such an analog I&F neuron in provided in the following diagram.

The input current Iin is integrated on to the neuron’s membrane capacitor Cmem until
the spiking threshold is reached. At that point the output signal Vspk goes from zero
to the power supply rail, signaling the occurrence of a spike. Then the membrane
capacitor is reset to zero, and the input current starts to be integrated again. The leak
module implements a current leak on the membrane. The spiking threshold module
controls the voltage at which the neuron spikes. The adaptation module subtracts a
firing rate dependent on current from the input node. The amplitude of this current

Page | 6

increases with each output spike and decreases exponentially with time. The
refractory period module sets a maximum firing rate for the neuron. The positive
feedback module is activated when the neuron begins to spike and is used to reduce
the transition period in which the inverters switch polarity, dramatically reducing power
consumption. The circuit’s biases (Vlk, Vadap, Valk, Vsf, and Vrf) are all subthreshold
voltages that determine the neuron’s properties.

Conductance-Based Models

These VLSI I&F neurons provide convenient approximations of the behavior of
neuronal soma without committing to the overhead of emulating the plethora of
voltage-dependent conductances and currents present in real neurons. But, if
necessary, these conductances can be emulated using subthreshold CMOS circuits.

The dynamics of these types of circuits is qualitatively similar to the Hodgkin–Huxley
mechanism without implementing their specific equations. An example of this type of
silicon neuron circuit is shown in the next figure.

The passive module implements a conductance term that models the passive leak
behavior of a neuron; in the absence of stimulation, the membrane potential Vmem
leaks to Eleak following first-order low-pass filter dynamics. The sodium module
implements the sodium activation and inactivation circuits that reproduce the sodium
conductance dynamics observed in real neurons. The potassium module implements
the circuits that reproduce the potassium conductance dynamics. The bias voltages
Gleak, VtNa, and VtK determine the neuron’s dynamic properties, whereas GNaon,
GNaoff, GK, and Vthr are used to set the silicon neuron’s action potential
characteristics.

Page | 7

Axons, Action Potentials, and the Address–Event Representation

Biological neurons communicate with one another using dedicated point-to-point
axons. The all-or-nothing action potential can be translated into a discrete level signal,
which is robust against noise and inter-chip variability, and can be conveniently
transmitted between chips and easily interfaced to standard logic and computer
systems. In the Address Event Representation (AER) method, the action potentials
generated by a particular neuron are transformed into an address that identifies the
source neuron and then broadcast on a common data bus. Many silicon neurons can
share the same bus because switching times in CMOS and on the bus are much faster
than the switching times of neurons. Events generated by silicon neurons can be
broadcast and removed from a data bus at frequencies greater than a megahertz.
Therefore, more than 1000 address events could be transmitted in the time it takes
one neuron to complete a single action potential. The addresses are detected by the
target synapses, which then initiate their local synaptic action as shown in the next
figure.

Asynchronous communication scheme between two chips (i.e. artificial neurons) using
the address–event representation (AER). When a neuron on the source chip
generates an action potential, its address is placed on a common digital bus. The
receiving chip decodes the address events and routes them to the appropriate
synapses.

Page | 8

Spiking Neural Networks

The hardware simulation of the brain is only one part of the problem. Although our
current software and algorithms can operate on multi-processor machines with tens of
cores, they are far from being able to run in parallel on brain-inspired machines with
hundreds of thousands or millions of cores.

The Neural Engineering Framework is a method used for constructing neural
simulations, and among one of the most mature and successful approaches for
instantiating spiking neural networks in software.

The framework was initially developed for understanding neurobiological systems and
is summarized below through the "Principles of Neural Engineering". The creators
used these principles to define a methodology for constructing simulations of neural
systems. They had great success in applying both the principles and the related
methodology to constructing models of perceptual, motor, and cognitive systems.

Principles of Neural Engineering

1. Neural representations are defined by the combination of nonlinear encoding
(exemplified by neuron tuning curves) and weighted linear decoding.

2. Transformations of neural representations are functions of variables that are
represented by neural populations. Transformations are determined using an
alternately weighted linear decoding (i.e., the transformational decoding as
opposed to the representational decoding).

3. Neural dynamics are characterized by considering neural representations as
control theoretic state variables. Thus, the dynamics of neurobiological systems
can be analyzed using control theory.

NENGO

Nengo is a graphical and scripting based Python package for simulating large-scale
neural networks that uses the three principles of Neural Engineering Framework.

Nengo is highly extensible and flexible. You can define your own neuron types,
learning rules, optimization methods, reusable subnetworks, and much more. You can
also get input directly from hardware, build and run deep neural networks, drive robots,
and even implement your model on a completely different neural simulator or
neuromorphic hardware.

Nengo is a powerful development environment at every scale. Among other
things, Nengo is used to implement networks for deep learning, vision, motor control,
visual attention, serial recall, action selection, working memory, attractor dynamics,
inductive reasoning, path integration, and planning with problem solving. Nengo has
libraries specifically designed to help with cognitive modelling, deep learning, adaptive
control, and accurate dynamics, to name a few.

Page | 9

Encoding

Neural populations represent time-varying signals through their spiking responses. A
signal is a vector of real numbers of arbitrary length. This example is a 1D signal going
from -1 to 1 in 1 second.

These signals drive neural populations based on each neuron’s tuning curve (which is
similar to the current-frequency curve, if you’re familiar with that). The tuning curve
describes how much a particular neuron will fire as a function of the input signal.

We can drive these neurons with our input signal and observe their spiking activity
over time.

Page | 10

Decoding

We can estimate the input signal originally encoded by decoding the pattern of spikes.
To do this, we first filter the spike train with a temporal filter that accounts for
postsynaptic current (PSC) activity.

Then we multiply those filtered spike trains with decoding weights and sum them
together to give an estimate of the input based on the spikes.

The decoding weights are determined by minimizing the squared difference between
the decoded estimate and the actual input signal.

The accuracy of the decoded estimate increases as the number of neurons increases.

A complete overview can be visualized in the following diagram.

Any smooth signal can be encoded and decoded.

Page | 11

Encoding and decoding allow us to encode signals over time, and decode
transformations of those signals. In fact, we can decode arbitrary transformations of
the input signal, not just the signal itself (as in the previous example). Let’s decode the
square of our white noise input.

Notice that the spike trains are exactly the same. The only difference is how we’re
interpreting those spikes. We programmed Nengo to compute a new set of decoders
that estimate the function x2. In general, the transformation principle determines how
we can decode spike trains to compute linear and nonlinear transformations of signals
encoded in a population of neurons.

Page | 12

We can then project those transformed signals into another population, and repeat the
process. Essentially, this provides a means of computing the neural connection
weights to compute an arbitrary function between populations. Suppose we are
representing a sine wave.

Linear transformations of that signal involve solving for the usual decoders, and
scaling those decoding weights. Let us flip this sine wave upside down as it is
transmitted between two populations (i.e. population A and population -A).

Nonlinear transformations involve solving for a new set of decoding weights. Let us
add a third population connected to the second one and use it to compute (−A)2

Page | 13

So far, we have been considering the values represented by ensembles as generic
“signals.” However, if we think of them instead as state variables in a dynamical
system, then we can apply the methods of control theory or dynamic systems theory
to brain models. Nengo automatically translates from standard dynamical systems
descriptions to descriptions consistent with neural dynamics.

In order to get interesting dynamics, we can connect populations recurrently (i.e., to
themselves). Below is a simple harmonic oscillator implemented using the third
principle. It needs is a bit of input to get it started.

