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Abstract. There are two important aspects that will play important roles in future manufacturing systems: 
changeability and human-machine collaboration. The first aspect, changeability, concerns with the ability of 
production tools to reconfigure themselves to the new manufacturing settings, possibly with unknown prior 
information, while maintaining their reliability at lowest cost. The second aspect, human-machine collabo-
ration, emphasizes the ability of production tools to put themselves on the position as humans’ co-workers. 
The interplay between these two aspects will not only determine the economical accomplishment of a 
manufacturing process, but it will also shape the future of the technology itself. To address this future 
challenge of manufacturing systems, the concept of Cognitive Factory was proposed. Along this line, 
machines and processes are equipped with cognitive capabilities in order to allow them to assess and increase 
their scope of operation autonomously. However, the technical implementation of such a concept is still 
widely open for research, since there are several stumbling blocks that limit practicality of the proposed 
methods. In this paper, we introduce our method to achieve the goal of the Cognitive Factory. Our method is 
inspired by the working mechanisms of a human’s brain; it works by harnessing the reasoning capabilities of 
cognitive architecture. By utilizing such an adaptive reasoning mechanism, we envision the future manu-
facturing systems with cognitive intelligence. We provide illustrative examples from our current research 
work to demonstrate that our proposed method is notable to address the primary issues of the Cognitive 
Factory: changeability and human-machine collaboration. 
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1. Introduction 

 

The challenges of the 22nd century manufacturing 

system rely on the dynamic interaction between well-
defined manufacturing processes and the adaptability of 

tools developed by engineers. The tools are not only capable 

of handling high speed and high precision production 

processes, but they are also expected to be able to cope with 

uncertainty and risk introduced in a dynamic environment 

[1-3]. 

In a dynamic environment, the production tools work 

under direct supervision of humans or they share the 

working place with humans. In both cases, the interaction of 

both production agents (machinery and humans) may 

produce interdependency that leads to a cooperation 
scenario. Within this scenario, the paradigm of reconfi-

gurable manufacturing was developed [4-5].  

In a reconfigurable manufacturing, the system behavior 

is changed as a result of an applied new system confi-

guration [6-8]. Hence, this reconfigurable paradigm is not 

only intended to supplement the existing flexible manu-

facturing system with agility and adaptability, but also with 

a changeability attribute. This changeability attribute pro-

vides a systematic treatment to deal with uncertainty in a 

manufacturing environment [9].  

Many researchers see this changeability attribute as a 

characteristic to accomplish early and foresighted adjust-
ments of factory’s structures and processes economically on 

all levels. In general, the changeability always requires 

system configurations that consist of exchangeable compo-

nents. In this circumstance, the changeability of manufactur-

ing behavior can be achieved by adaptively reconfiguring 

the production tools (of both hardware and software), which 

leads to the development of a reconfigurable system. 
The concept of reconfigurable machine tools requires 

that the interfaces between the elements of the manufactur-

ing system should be kept at minimum in order to enable re-

integration. Practically, this can be achieved through self-

sustaining mechatronic configurable modules that contain 

all components needed for a satisfactory function. One 

potential solution of this practicality can be attained by 

reducing the number of interfaces to a bus system for 

communication and a bus system for the energy supply. 

However, such an approach might not be a general solution 

and suffer its immediate drawback especially with regard to 
the limitation of the existing machine tools or plants.  

In this paper, we propose a novel solution for manu-

facturing agents by applying a more flexible treatment 

through learning mechanisms. Our approach comes from 

the insight that the highest degree of changeability is still 

reached by human workshops with skilled workers and their 

cognitive capabilities, which enable them to react to 

changes, perceive their environment, plan their next actions, 

and know what they are doing.  

To achieve such a level for a production system, we 

need to look for a new strategy that puts production 

planning and automation in a cognitive manner. This idea, 
which leads to the proposal of a Cognitive Factory, is further 

examined by several research institutes and universities. 

Basically, the Cognitive Factory is a form of Cognitive 
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Technical Systems (CTS), which enables factory environ-

ments to react flexibly and autonomously to changes, 

similar to human operated facilities [10-12]. The main goal 

of such an intelligent facility is to increase the autonomy of 

manufacturing elements and to enhance their changeability. 

It utilizes some techniques of Artificial Intelligence (AI) and 

Cognitive Engineering (CE) by introducing a cognitive 

architecture which comprises knowledge models, methods 

for perception and control, methods for planning, and a 

cognitive perception-action loop [13-14].  
Such reasoning tasks can be modeled systematically 

using biologically inspired cognitive architectures, and we 
propose to use brain-inspired information processing to 
conceive such models. By utilizing learning paradigms on 
the model, the required controller elements can be deve-
loped easily using the current know-how of the ‘state-of-the-
art’ of control systems. In addition, our approach will 
reinforce the self-adapting control systems with mechanisms 
for monitoring and identification of mechanical modules, 
and an online re-configuration for the automatic adaptation.  

This paper is presented as follows. In section two, we 
describe the fundamental concept of brain-style information 
processing for cognitive embodiment that plays an impor-
tant role in a reconfigurable manufacturing system. In 
section three, we demonstrate how we implement two 
sample cognitive architectures as the basis for developing 
and empowering a Cognitive Factory. In section four, we 
discuss some important aspects regarding the achievements 
of our methods. Finally, we conclude our work in section 
five and explain further direction of our research. 

 
2. Brain-inspired Processing with Cognitive 

Architecture 
 
The main theme of this paper is how we employ 

adaptive reasoning for a Cognitive Factory. By definition, 
reasoning is a mechanism of making sense of data by 
applying computational logic and algorithms based on new 
or existing information. We employed fundamental con-
cepts developed in neuroscience to gain some insight on the 
brain-inspired processing mechanism. As a result, we 
developed networks that can be used to construct a cognitive 
architecture that can be used to empower a Cognitive 
Factory. This section describes the fundamental concepts of 
our method. 
 
2.1 From CTS to Cognitive Factory 

 
We argue that the primary requirement to address 

changeability of reconfigurable manufacturing systems is 
the transfer of cognitive skills, which are attributed to 
intelligent animals and humans, to technical systems such as 
robots, manufacturing systems and vehicles. This will take a 
form of reasoning: such technical systems can perceive and 
react appropriately to their environment, and even can 
cooperate with people in a way that humans can cope with, 
both physically and intellectually. These capabilities can be 
acquired through learning processes. Hence, cognitive tech-
nical systems (CTS) can be built as information processing 
systems that perform cognitive control and have cognitive 
capabilities. Figure 1 shows how the reasoning as a close 
perception-action loop is conceived in a cognitive architec-
ture. 

 

Figure 1. Reasoning through a cognitive architecture 

 

 
 

Figure 2. The seamless interaction between humans and 
machines will be a key to success of a Cognitive Factory 
(source: http://www.ei.tum.de/en/research/coc-robotics-
autonomy-and-interaction/) 

 

To deliver this concept in reality, the German Cluster of 

Excellence called CoTeSys (“Cognition for Technical 

Systems”) was founded. This research is coordinated by 
Institute of Automatic Control Engineering (Lehrstuhl für 

Steuerungs- und Regelungstechnik) at Technische Univer-

sität München (TUM) as a close collaboration between 

scientists from various disciplines connecting neurocog-

nitive and neuro-biological foundations to engineering 

sciences. CoTeSys investigated cognition for technical 

systems such as vehicles, robots, and factories. One miles-

tone of this project is the concept of Cognitive Factory that 

uses cognitive architectures as the foundation of a manu-

facturing system. Within this framework, constructive colla-

boration between humans and machines becomes one 
important aspect (see Figure 2). 

The Cognitive Factory combines the advantages of 

automated systems (e.g. low costs, high quality, high 

efficiency and low manufacturing times) with the flexibility, 

adaptability and reactivity of common human workshops. 

The position of this Cognitive Factory within the domain of 

manufacturing systems is depicted in Figure 3. 

With cognitive architecture, a factory system can learn 

new situation-specific models of production steps. It can 

also estimate the state of manufacturing processes and then 

dynamically reschedule the production steps in order to 

compromise disturbances as well as to give a response to 
dynamically-changed objective functions of the process. 

Such a cognitive capability is argued to be the best 

mechanism that provides human process planners with 

much more informative models of production processes that 

are learned from experience. This in turn will lead to the 

best practice of human-machine collaborations. 
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Figure 3. Cognitive Factory as a new framework in the 
domain of manufacturing system 
 

In order to achieve such excellent goals, we need to 

embody the cognitive intelligence itself to the manufactur-

ing tools. There are several strategies that can be applied to 

obtain a cognitive architecture for the embodiment process. 

In our work, we are interested to investigate the brain-style 
information processing to apply the cognitive intelligence to 

the elements of a Cognitive Factory. The idea of brain-style 

information processing can be applied in many aspects, but 

in this paper we only cover the most two fundamental 

concepts: cortically inspired network and brain-connectome 

inspired network. Figure 4 depicts our interpretation of brain 

mechanism based on neurological data collected across 

cortex area. 

 

2.2 Cortically-inspired Network for Information 

Processing 

 
In neuroscience, cortex is a part of the mammalian brain 

(including human brain), that involves in higher functions 

such as sensory perception, generation of motor commands, 

spatial reasoning, conscious thought and language. 

Reasoning mechanisms in the cortex are very different with 

the standard computing mechanisms in modern digital 

computer systems. Computers use re-programmable, high-

performance CPUs to process data fetched from and stored 

to memory, whereas in brains, neural processing and 

synaptic data storage are completely inter-meshed, with 

each cortical area being responsible for both memory and 

processing. The cortical circuitry can be mimicked in a 

technical system, for example, to perform egomotion 

estimation.  

It is commonly agreed that the brain contains areas 

specialized for processing different types of information 

incoming from sensors [15]. A major determinant for a 

brain area’s ability to process a certain type of information is 

the input it receives. Cortical areas, through their coor-

dination dynamics, are thought to rapidly resolve a large 

number of mutually imposed constraints, leading to consis-
tent local states and a globally coherent state of cognition 

[16]. 

The unique processing characteristic of each cortical 

area is defined in terms of the area’s interactions with the 

other areas [17]. Hypotheses from cortical inter-areal 

coordination studies support evidence that these areas aim to 

reach a consensus and maintain mutually consistent infor-

mation with the others resolving coherence or incoherence 

relations (i.e. constraints). There is strong behavioral and 

physiological evidence that the brain both represents proba-

bility distributions and performs probabilistic inference [18]. 
Furthermore, neurobiological evidence supports the view 

that elementary sensory representation and functions are 

localized in discrete areas, whereas complex functions are 

processed in parallel in widespread networks [19]. 

Large-scale cortical networks provide a framework to 

integrate evidence from neuroanatomical and neurophysio-

logical studies on distributed information processing in the 

cerebral cortex. Elementary sensory processing functions 

are localized in discrete recurrently interacting cortical areas, 

whereas complex functions (e.g. cue integration) are pro-

cessed in parallel involving large parts of the brain.  
Based on those findings, we develop our cortically-

inspired network that can be used to empower an intelligent 

system. In section 3.1 we describe one particular example of 

application derived from our network. 

 

2.3 Brain-connectome-inspired Network for Cognitive 

Architecture 

 

For more than 50 years since its initial booming, Arti-

ficial Intelligence (AI) has attracted a lot of interdisciplinary 

 
 

Figure 4. General overview of brain graph showing high level connection between parts in human’s brain (the left figure is 

adapted from [23]) 
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researchers to uncover one of the most fundamental 

challenges in science and technology: how does intelligence 

form? Within this domain, many AI researchers explore the 

cognitive capabilities such as perception, reasoning, 

planning, and learning with a long term goal of turning 

technical systems into systems that “know what they are 

doing” [13]. Technical systems with cognitive capabilities 

will be much easier to interact and cooperate with humans, 

and are expected to be more robust, flexible, and efficient 

when working in a dynamic environment such as human 

living space. Not surprisingly, this in turn leads to the 
development of the abstract concept of embodied mind. 

One source of inspiration for the embodiment theory has 

been the research in cognitive neuroscience. The idea of the 

embodied mind starts to grow and becomes one of the 

intense debates within the field. Neuroscientists discuss how 

both our neural and developmental embodiment shapes our 

mental and linguistic skills. The degree of thought 

abstraction has been found to be associated with physical 

distance which then affects associated ideas and perception 

of risk [20]. They also explain the idea of embodied 

cognition in terms of dynamical systems theory which leads 

robotic experts to explore the domain of imitation learning 

[21-22]. 

In our work, we are interested to explore the idea of 

transforming brain neurological data into a network of 

interconnected nodes. This is the fundamental concept of 

Brain Graph theory [23]. A Brain Graph is a model of the 

connectome of a nervous system, which interconnects 

processing nodes through a set of communication edges. A 

connectome is a complete point-to-point spatial connectivity 

of neural pathways in the brain which represents a 
comprehensive map of neural connections in the brain [24]. 

Computational neuroscientists build these brain graph 

models using topological and geometrical approaches that 

demonstrate both structural and functional organization of 

the human brain [25]. In such Brain Graphs, nodes represent 

collections of similar neurons (in terms of structure and 

function), while edges represent structural – and hence 

functional – connections between those nodes.  

Such a representation was originated from the research 

domain of Graph Theory, and shares many similarities with 

 
 

Figure 5. How we relate neuroscience, artificial/cognitive intelligence and robotics. We learn from neuroscience, 

how the cognitive intelligence is emerged; we learn from artificial intelligence (machine learning), how we can 

model it; we then apply our model in robotics applications that are suitable in a Cognitive Factory environment. We 

hope that our work may also provide valuable feedback and insight for our colleagues in neuroscience on how the 

cognitive intelligence should be studied further. 



Sugiarto, I. et al. / From Adaptive Reasoning to Cognitive Factory / JIRAE, Vol. 1, No. 1, September 2016, pp. 1–10 

 5 

probabilistic graphical models: (a) nodes are computational 

units within a distributed system that are functionally 

separable from each other; and (b) interactions between such 

nodes become continuously less meaningful the more 

similar the nodes are to each other.  

In machine learning, probabilistic graphical models are 

used for computing uncertainty and for the generation of 

actions based on perception, which provides a unified 

framework for graph theory and probabilistic reasoning in 

complex real-world settings. This has led our work to 

develop a framework to generate intelligent behavior in a 

fashion similar to neural computation in the brain: a 

massively parallel distributed computing system, in which 

overall performance comes from independent computation 

of local units that communicate with a subset of neighboring 

nodes.  

It is believed that cognitive intelligence can naturally be 

explained if human cognitive representations are understood 

to be structured like graphical models [26]. In our research, 

we model Brain Graphs for sensory perception and actuator 

action generation in the setting of autonomous robots that 

interacts in its environment (see Figure 1). We investigate 

Factor Graphs (a subclass of Graphical Models) to represent 

relations between observable sensory signals, possible 

hidden states, and desired robot actions. Transforming brain 

graphs into factor graphs can help the Machine Learning 

community to understand the technical constraints which 

make those brain graph models more applicable in technical 

systems. Figure 5 gives a notion of contribution of our work 

in related fields. 

In the field of human physiology, it is a straightforward 

observation that humans can easily change from task to task 

without too much effort, revealing the fact that humans have 

a long history of adapting the model-based learning features. 

These model-based features are also believed by scientists, 

leading to the conclusion that intelligent mammals rely on 

their own internal models in order to generate their actions. 

While conventional robotics rely on manually generated 

models that are based on human insights into physics, it is 

also predicted that future autonomous, cognitive robots need 

to be able to automatically generate models that are based 

on information perceived by the robots [22]. 

In our work, we extended our basic factor graph 

framework into a dynamic one that is suitable for model-

based learning. We argue that model-based learning using 

factor graphs is one of important ingredients to create 

adaptive agents as the basis for reconfigurable manufac-

turing tools. This is because a factor graph can be regarded 

as a unified approach of both directed and undirected graph 

theory. This unified approach is an ideal solution for dealing 

with uncertainty: something that changeability is striving 

for. In section 3.2 we provide an example of how to use a 

factor graph for model-based learning to teach a robot to 

imitate human motions. 
 

3. Illustrative Examples 
 

The brain-inspired computing is a new fascinating 

approach that originates from the field of computational 

neuroscience. In this section, we give two examples of how 

we develop a cognitive architecture that functions as a base 

for a more complex system such as a Cognitive Factory. 

 

3.1 Cortically-inspired Sensor Fusion Network 

 
As an intelligent system, a manufacturing tool is 

expected to react intelligently in a dynamic environment. 

This action includes the self-localization of the agent 

moving in a factory working space. How can we apply 

cognitive intelligence on such an agent? One possible 

scenario is by utilizing egomotion estimation based on the 

theory of cortical networks [27]. 

Egomotion or self-motion refers to the combined 

rotational and translational displacement of a perceiver with 

respect to the environment. During motion, organisms build 

their spatial knowledge and behaviors by continuously 

refining their internal belief about the environment and own 

state [28]. During its development, the biological nervous 

system must constantly combine various sources of infor-

mation and moreover track and anticipate changes in one or 

more of the cues. Furthermore, the adaptive development of 

the functional organization of the cortical areas seems to 

depend strongly on the available sensory inputs, which 

gradually sharpen their response, given the constraints 

imposed by the cross-sensory relations [29]. 

One important aspect that needs to be addressed on 

egomotion estimation is how precise egomotion perception 

can be obtained given the complex multisensory environ-

ment. We solve this by trying to disambiguate the complex 

and global representation of the environment. In this 

scenario, all cues are combined in an informative and 

plausible way that leads to a sensor fusion strategy. Sensor 

fusion is a process that influences major aspects of percep-

tion, cognition and behavior in both physical and artificial 

systems [30]. The primary objective is to align the reference 

systems of the different congruent and redundant sensory 

cues. 

Our work is inspired by the distributed processing 

paradigm of the humans’ brain. Studies in Neuroscience 

reveal that the brain is capable of multimodal learning and 

robustly adapting to under-constrained or conflicting sen-

sory inputs. The brain can also maintain and continuously 

refine its internal belief about the environment. We imple-

mented this insight into a cortically-inspired network for 

egomotion estimation. The main architecture of our network 

for egomotion estimation is depicted in Figure 6. There is no 

explicit input or output in/from the network and sensor data 

just mildly influence the activity in the network. Based on 

the embedded relations, the network is able, in the absence 

of one or more sensors, to infer the missing quantities. 

The architecture shown in Figure 6 uses a distributed 

network in which independent neural computing nodes 

obtain and represent sensory information, while processing 

and exchanging exclusively local data, to infer an estimate 

of robot orientation and position. This model is inspired by 

the neural processing paradigm, where cortical areas 

involved in sensory processing assume rapid resolution of a 

large number of mutually imposed constraints (i.e. 

coherence/incoherence relations), leading to a globally 

coherent estimate of the percept. 
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Figure 6. Network architecture for egomotion estimation. 

The distributed network is composed of interconnected sub-

networks for heading and position estimation [27].  

 

3.2 Model-based Mobile Manipulator 

 

Programming the robot to carry certain task in a factory 

or in a daily life service is tedious work. The conventional 

method will usually involve precise mathematical formu-

lation of the task followed by some fine-tuning parameters 
of the preprogrammed robot system. Even in a simple robot 

system, this routine will be cumbersome in a frequently 

changing tasks setting. This motivates many researchers in 

AI and robotic systems to find a more compliant/relaxing 

way to handle this situation. The idea is simple: teach the 

robot to generate motions based on human experience. 

As an example test case, we developed a robotic appli-

cation in a placing-an-object scenario. In this scenario, the 

robot moves an object from one point to another point in 

space where the distance may be far, so that the robot’s arm 

is unable to put the object directly at the destination point. 

For this scenario, we developed a mobile manipulator - a 
hybrid robotic system, where a robotic arm is installed on 

top of a mobile robot, as shown in Figure 7.  

This hybrid system is challenging because the robot 

should maintain its stability while moving (e.g. by aligning 

the arm so that the overall center-of-mass will be close to the 

center of the whole body of the robot). For our initial 

experiment purpose, the robot operation did not start by 

picking up an object. Instead, the object is placed into the 

gripper of the robotic arm.  

 
 

Figure 7. The mobile manipulator developed for the test 
case of our model-based learning method. It is composed of 
two subsystems: a 4-DOFs robotic arm and a mobile 
platform. 
 

We defined a session as a single placing-an-object task. 
In the beginning of the session, the original coordinate of the 
object’s center and the goal position are given. If required, 
the robot should move to the point where the arm is able to 
reach the object. When the robot is in the right position, the 
robot lifts the object and moves the arm, so that its overall 
center-of-mass is in a stable position. The robot then 
approaches the destination position. When it is close 
enough, the arm is moved (i.e. stretched), so that the object 
can be placed at the goal position. In the future, we plan to 
extend this motion with the localization task described in 
section 3.1. To apply model-based learning, we proposed a 
model shown in Figute 8.  

The upper level of the model shown in Figure 8 is a 
model of a task constrained control of our mobile 
manipulator. In this model, we define several discrete 
variables (shown in boxes) as well as real-valued variables 
(shown in circles). In our notation, a task T = {extend, 
⌐extend} refers to a “basic task” that the robotic arm should 
do; that is, either extending or retracting its arm. The 
position of the end-effector will be determined by the 
variable G, which indicates the target/goal position, and the 
current position of the mobile robot M. During the 
movement, the arm’s orientation will be determined by the 
task constraint C1 = {flat, ⌐flat}. The flat pose means that 
the arm should keep its joints configuration to be 0° in total, 
so that the end-effector will always be in a horizontal 
position. The non-flat pose means that the arm can use all 
possible joints configurations to reach the target, allowing it 
to have the longest reaching posture. The reachability 
indicator R = {reachable, ⌐reachable} determines whether 
the mobile robot should move (further toward or away 
to/from the object), or stay at the current position. It also 
determines whether the mobile robot should perform the 
rotation in order to align itself in-line with the object 
(positioned straight directly toward the object), or stay still. 
Hence, the value of this variable will depend on the position 
of the object along with its goal position, the current pose of 
the mobile robot, and the current pose of the robotic arm. In 
addition, we need to inform the variable R about the 
physical constraint (e.g. the diameter) of the mobile robot 
via the variable C2. 

The robot then creates the skill model using some 
learning algorithm that exploits the statistical regularities 
across multiple observations [31]. Figure 9 shows the basic 
principle of learning new skill using the programming by 
demonstration (PbD) paradigm. 
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Figure 8. The graphical model of our mobile manipulator 
shown in Figure 7 

 

 
 

Figure 9. The conceptual principle of model-based learning 
using programming by demonstration 
 

4. Experimental Results and Discussion 
 

In section 3.1 we described one example application of 
the cortical network for egomotion estimation. In order to 
test our proposed model, we applied it for a quadrotor 3D 
egomotion estimation and extended it with learning 
capabilities, briefly depicted in Figure 10. This scenario is 
based on our previous work in [32]. In this scenario, a 
quadrotor hovers (remote controlled) in an uncluttered 
environment, while an overhead camera system keeps track 
of its position and orientation.  

After the flight, preprocessed data from the available 
sensors (i.e. gyroscope, accelerometer and a magnetic 
sensor) are fed to the model to extract the relations between 
the sensors for each of the three degrees of freedom (i.e. roll, 
pitch and yaw). Figure 11 presents a decoupled view for 
each degree of freedom, depicting the learned relations and 
estimation accuracy. 

We observe in Figure 11 that the learned relations 
resemble the nonlinear functions (i.e. arctangent) used in 
typical modeling approaches, although preserving irregu-
larities in the cross-sensory relations. For roll estimation, the 
network learns the relation between net rotational acce-
leration provided by the accelerometer and the absolute roll 
angle estimate provided by the gyroscope. For pitch 
estimation, the network extracts the nonlinear dependency 
between the accelerometer data and the gyroscope data. For 
yaw estimation, the network uses the gyroscope absolute 
angle and the magnetometer contribution, based on mag-
netic field readings on the other two axes.  

 

 
Figure 10. Experimental setup used in [32]: a) Quadrotor 
platform; b) Reference system alignment and ground truth 
camera tracking system 

 
(a) 

 

 
(b) 

 

Figure 11. Network instantiation for 3D egomotion estima-

tion: a decoupled view analysis. a) Learned relations; b) 

Estimation quality using learned relations. 

 

As our results show, the model is able to extract the 

underlying data statistics without any prior information, 

such that the sensory data distribution is learned directly 

from the input data. Moreover, following the statistics of the 

data, the network allocates more neurons to represent areas 

in the sensory space with a higher density such that the 

cross-sensory relations are sharpened, visible in Figure 

11(b). This is a very interesting feature that can be adopted 
for generic localization tasks. With this capability, manu-

facturing tools in a Cognitive Factory can react intelligently 

so that they can localize themselves in a factory working 

space. Regarding our method with state-of-the-art proba-

bilistic sensory fusion mechanisms (i.e., Bayesian network), 

we address three key aspects: complexity, flexibility and 

robustness (see Table 1). 
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In section 3.2 we described one example of our 

proposed method to embody cognitive intelligence on a 

hybrid robotic platform. To use the PbD paradigm for 

generating the skill, we need to provide several demons-

trations from which the trajectory of the movement can be 

learned. Each demonstration trajectory is fed into the 

regression network and the parameter of the network will 

be updated accordingly. 

In general, any sequential actions can be performed and 
learned by using this PbD paradigm. As an example for a 
complex trajectory, we “guided” the robotic arm to pick up 
an object from one position and then place it on another 
position. This scenario is depicted in Figure 12. After seve-
ral demonstrations, we perform the regression using the 
same mechanism shown in Figure 9. The estimated trajec-
tory is then sent to the robot’s kinematic controller. The 
snapshots of this run after learning the trajectory is depicted 
in Figure 13.  

Table 1. Comparison between state-of-the-art and our proposed model for sensor fusion 

Criteria Bayesian Network Proposed Model 

Complexity large number of probabilities to apply 
probabilistic inference 

compute multiple simple update rules 

Flexibility requires parameters adjustments for additional 

sensory modalities; adding sensors improves 

performance but increases complexity 

sensor addition (adding more update 

rules/constraints) is straightforward and without 

complexity increase 

Robustness dedicated means to detect failures, not generally 

applicable; challenges in assigning probabilities in 

an uncertain context 

abnormal sensor activity can be detected and 

penalized by adapting η (e.g. the influence of that 

sensor in the global estimate) 

 

 

Figure 12. Guiding the robotic arm to follow a trajectory 

 

 

Figure 13. Robotic arm executes the trajectory it learned before 
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From our experiment, the model-based learning applied 

to our hybrid robot was successfully implemented. From 

this result, we argue that we can extend our method to a 

more complex learning process in a dynamic environment 

of a Cognitive Factory. This is because once the robot learns 

the skill (i.e. the trajectory); it can use the standard scaling 

procedure to get different effects such as the different start 

and goal positions. At this point, we can see that our method 

has opened wider research challenges for further develop-

ment of a Cognitive Factory. We regard these challenges as 

opportunity for our future work. 

 

5. Conclusion 

 

This paper presents a fundamental concept of delivering 

theories from neuroscience into engineering tasks that are 

suitable to build modern manufacturing systems. There are 

two important aspects that will play important roles in future 

manufacturing systems: changeability and human-machine 

collaboration. The first aspect, changeability, concerns with 

the ability of production tools to reconfigure themselves to 

the new manufacturing settings, possibly with unknown 
information a priori, while maintaining their reliability at 

lowest cost. The second aspect, human-machine collabo-

ration, emphasizes on the ability of production tools to put 

themselves on the position as humans’ co-workers. The 

interplay between these two aspects will not only determine 

the economical accomplishment of a manufacturing process, 

but it will also shape the future of the technology itself. To 

address this future challenge of manufacturing systems, we 

propose to embody cognitive intelligence on manufacturing 

components such that they become subjects of a Cognitive 

Factory. In this concept, machines and processes are 
equipped with cognitive capabilities in order to allow them 

to assess and increase their scope of operation autono-

mously, while maintaining their ability to work cooperate-

vely with humans. We introduced our method to achieve the 

goal of Cognitive Factory and gave two fundamental 

examples that exemplify the notion of brain-inspired infor-

mation processing. Our method is inspired by the working 

mechanism of the human’s brain; it works by harnessing the 

reasoning capabilities of cognitive architecture. By utilizing 

such an adaptive reasoning mechanism, we envision the 

future manufacturing systems with cognitive intelligence. 

By employing such a cognitive intelligence on manufactur-
ing components, we will achieve the primary goals of 

Cognitive Factory: changeability and human-machine 

collaboration. 
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