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Abstract—Remote monitoring health data analysis holds the
potential to reduce pregnancy complications, improve patients’
quality of life, enhance the efficiency of healthcare delivery and
reduce healthcare costs. In this paper, we present a method based
on fuzzy inference systems to monitor pregnancies complicated
by gestational diabetes mellitus (GDM). The system is simple,
fast, flexible and exploits domain expertise in assessing risk levels
according to capillary glucose levels from women with GDM. We
show that this approach generates an interpretable input, which
is valuable in medical applications. To prove the capabilities of the
system, we present prediction results from 50 real-world patients
and show that the system obtains relevant glycaemic-control
data comparable to current monitoring methods that rely on
periodic face-to-face physician review. Our systems achieves 95%
accuracy. Moreover, we show that the difference in predictions
account for a more personalized treatment.

Index Terms—E-Health, Fuzzy Inference System, Gestational
Diabetes Mellitus

I. INTRODUCTION

There are approximately 60 million people living with

diabetes in Europe, accounting for approximately 10.3% of

men and 9.6% of women over the age of 25. Accordingly, rates

of gestational diabetes mellitus (GDM) are also increasing

rapidly due to unhealthy lifestyle, increased obesity prevalence

[1] and a lower thresholds for diagnosis in recent years.

As a result, many more women are faced with diabetes

during pregnancy which puts both mother and child at risk of

developing type II diabetes later in life [2]. The International

Diabetes Federation (IDF) has estimated that in Europe 89

billion euro were spent on treating and managing diabetes and

its related complications in 2011 (work days lost not included).

A more efficient glucose monitoring system and early

detection of GDM will positively impact a patient’s quality

of life and holds the potential to confer significant healthcare

cost savings and improved efficiency in clinic processes. At

the Rotunda Hospital (https://rotunda.ie/), a tertiary referral

major perinatology centre in Dublin, approximately 9000

babies are delivered every year. Despite this high-throughput
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environment, many services continue to rely on outdated,

paper-based, information systems. Currently at the Rotunda,

pregnancies complicated by diabetes are managed alongside

routine antenatal care in an outpatient department with limited

staff and resources. The diabetes care team sees approximately

25 patients in hospital every day for visits that require the

patient to remain in hospital for up to 3 hours. In addition

to running the clinics, midwives are responsible for receiving

approximately 100 calls/week from patients to relay their

blood sugar levels over the phone. The midwives manually

transcribe this information and then pass it on to a consultant.

This process is overly manual, time-consuming and vulnerable

to human error. Furthermore, evidence has shown that as

many as 22% of women with gestational diabetes falsify

glucose values. This is a recognized challenge faced by the

health care team and can prevent appropriate management

which in turn puts these women and their babies at risk.

The application of Big Data Analytics solutions to assist with

the secure transfer, storage and analysis of health information

holds the potential to greatly improve current approaches.

BigMedilytics (Big Data for Medical Analytics) is the largest

EU-funded initiative to transform the regions healthcare sector

by using state-of-the-art big data technologies to achieve

breakthrough productivity in the sector by reducing cost,

improving patient outcomes and delivering better access to

healthcare facilities simultaneously. One of the pilots within

this project (https://www.bigmedilytics.eu/pilot/diabetes/) aims

to develop a complete monitoring system, including a mobile

app (connected with glucometers to ease data collection, and

presenting analytics results to the patients), and a web portal

to present the data to the medical team . This work presents

the initial model used for monitoring.

In order to extract the underlying correlations and insights

of the processes governing GDM data (i.e. glucose level) data

from 50 patients were collected and analysed. With the advent

of Big-Data and modern Machine Learning (ML) and Artificial

Intelligence (AI) algorithms, such data mining applications are

sought after, both by research and clinical labs [3]. Expert

systems, as a branch of AI, are used when applying specialized

knowledge [4]. Such systems use this knowledge to make
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suggestions to users who may not have the full range of

expertise available to the system. These systems are capable of

manipulating symbolic as well as numerical data and have the

ability to interact with the user in something approximating

natural language, such as fuzzy logic [5]. Moreover, such

systems are used as a core element of Decision Support

Systems (DSS), which are typically the clinical end-points

[6]. In GDM, DSS form a significant component of clinical

knowledge management technologies through their capacity

to support the clinical process and the use of knowledge,

from diagnosis and investigation through treatment and long-

term care. Diagnosis needs the integration of different sources

of data (i.e. glucose reading from the patient) and the on-

line or off-line collaboration of different kinds of specialists

(e.g. obstetricians and endocrinologists). DSSs are typically

designed to integrate a medical knowledge base, patient data

and an inference engine to generate case-specific advice. Cur-

rent DSS systems exploit expert systems implementations that

eliminate the uncertainty and imprecision associated with the

diagnosis of gestational diabetes, using fuzzy classification [7].

Despite the flexibility of the proposed system, this approach

only used artificial data and considered a large number of

features to monitor, which in real-world scenarios might not

be available or may be expensive to obtain due to the lack

of sensors. Using an adaptive neurofuzzy inference system

(ANFIS), the study in [8], combined the regression power of

neural networks and flexibility of fuzzy logic in a system that

has short training time and average accuracy in prediction.

The drawbacks that such a system carries is the lack of

explainability and the training time which will be triggered

whenever new patient data is available. Moreover, none of the

reviewed studies are addressing real-time continuous glucose

monitoring in gestational diabetes [9], as such a task requires

a lightweight, inference system with flexible use of domain

expertise that offers a timely and interpretable output. Another

aspect motivating our work looks at the need for making a

trade-off between which glycaemic markers are informative

to be monitored for fast risk assessment [10]. The proposed

approach for GDM monitoring exploits the available real-

world data of 50 patients and provides results comparable

to the output of a specialized clinician. The output can be

easily embedded in the clinical infrastructure or in personal

monitoring systems. With a pragmatic approach targeted at

delivering a flexible and efficient prediction mechanism, our

Fuzzy Inference System obtains comparable output with the

physician opinion. The system is employing a simple and ex-

plainable structure, fast and adaptive processing (no training),

and offers an interpretable output tailored for each patient. We

believe that such an approach can contribute to the current

initiatives targeting personalized medicine.

II. MATERIALS

In this section we will describe the data and the experimen-

tal instrumentation used to validate our model.

A. Data analysis

The data used for validating the model was collected in

a study in Rotunda hospital, Dublin. GDM patients are diag-

nosed approximately in the 28th pregnancy week. Participating

patients were asked to collect four daily glucose level mea-

surements until delivery, one in the morning (fasting) and the

remaining three readings taken one hour after the three main

daily meals (postprandial). For this analysis, fully anonymized

data from 50 patients were used, with different levels of

adherence to the schedule of measurements, ranging from one

every week (i.e. around 10 measurements in the whole period),

to several daily measurements (i.e. 700 measurements).

Fig. 1. Distribution of postprandial glucose levels.

Fig. 2. Distribution of fasting glucose levels.

The data distribution can be observed in figures 1 and 2

for postprandial and fasting measurements respectively. We

fit a normal distribution to the values observed, which we

will use in section IV to validate the model. Original data
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Fig. 3. Generic architecture and processing of the Fuzzy Inference System.

are used exclusively to fit the distributions that will generate

the validation samples.

B. Fuzzy Inference Rules Design

For the definition of our fuzzy inference expert system, we

used protocols collected from different hospitals in Ireland.

In order to monitor GDM, hospitals currently analyze one

week of data, and call the patient in when more than 30%
of the values are over a certain threshold. The thresholds

depend on the hospital, and they are different for postprandial

and fasting measurements. These thresholds range around 7

mmol/L for postprandial measurements, and 5 mmol/L for

fasting measurements. We will use this values as a base for

the fuzzy inference rules definition.

III. METHODS

A. Fuzzy Inference Systems

1) Core principle: Fuzzy inference systems are regarded

as modeling structures with well-defined functional blocks of

input and output interfaces along with a processing module

that carries out all the computation at the linguistic level.

Generically, a fuzzy inference system consists of four parts:

the fuzzification interface, knowledge base, decision-making

unit, and defuzzification interface, as shown in Figure 3.

The essential role of the fuzzification is to convert the

information coming from the environment (numerical quanti-

ties) in an internal format (i.e. through membership functions)

acceptable by the knowledge-base and the decision-making

unit (i.e. evaluating IF-THEN statements). Symmetrically, the

defuzzification provides a conversion procedure to transform

information coming from the decision-making module into the

form acceptable by the modeling environment (i.e. interpreting

the rule evaluation output as a numerical quantity), as shown

in Figure 3. The semantic integrity enables humans to assess

the meaning of the linguistic terms formalized by a set of rules

that should be considered in the design of the input and output

interfaces [11].

2) Interpretability: Fuzzy Inference relies on linguistic

representation of knowledge that is processed by operating

at the semantical level defined through fuzzy logic. Linguistic

representation of knowledge is a core feature of fuzzy systems

where rule models are acquired from data supporting the

overall interpretability of such a system [12]. Yet, more formal

and grounded approaches were developed for evaluating inter-

pretability. The interpretability of a fuzzy rule-based model is

measured in terms of cointension degree between the explicit

semantics, defined by the formal parameter settings of the

model, and the implicit semantics conveyed to the reader by

the linguistic representation of knowledge [13].

3) Explainability: The objective of explainability is boost-

ing the transparency in the solutions proposed for applications,

and therefore the ability to trust the system output. A huge

motivation for our approach is rising also from the legal and

privacy aspects. The new European General Data Protection

Regulation that became active on May 25th 2018, requires

to be able to give meaningful information about the decision

making (art. 14 of GDPR). This does not imply a ban
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on ML approaches or an obligation to explain everything

all the time, however, there must be a possibility to make

the results re-traceable on demand. Fuzzy Inference System

incorporate explainability directly into the structure of the

model, hence achieving explainability by design. Moreover,

as an interpretable glass-box approach, fuzzy inference has a

long tradition providing a good framework for the interaction

between human expert knowledge and hidden knowledge in

the data [14].

B. Fuzzy Inference Systems for GDM

The proposed Fuzzy Inference System uses a one-week (7

days) rolling window for monitoring patients diagnosed with

GDM. At a rate of 4 measurements per day (one fasting,

three postprandial), 28 different input variables are considered.

The fuzzy system collects the input values for the week, and

assigns a risk level between 1 and 100 to the observation.

Finally, the system evaluates the rules in order to generate

the output based on the inputs configuration. Every input

has two membership functions (i.e. LOW and HIGH), and

thus defining explicitly all rules would generate 228 different

combinations. As this is not feasible from a computational

standpoint, we will apply a rule pruning algorithm to reduce

the rules set.

1) Input variables: Input variables are separated in two

groups with different thresholds values: fasting and postpran-

dial. To create the entire input configuration, we first stack the

postprandial values, and then the fasting values. We define

in := [post0, ..., postnpost−1, pre0, ..., prenpre−1] (1)

as the input vector for the crisp (real) values for the system.

Fig. 4. Membership functions for fasting measurements.

Input values are considered to range in the interval [0, 15].
This range includes all glucose level detected in the original

study.

In order to define the membership functions for fuzzifica-

tion, we used the thresholds currently used in GDM monitor-

ing. We took the most used value (i.e. 7 for the postprandial

measurements, and 5 for fasting), and gave some variability

(i.e. var in the formulas) so that it would include rules from

all hospitals. For this paper we use var = 0.3.

Fig. 5. Membership functions for postprandial measurements.

Membership functions can be found in figures 4 and 5. They

use a trapezoidal shape, defined as

normal = [0, 0, threshold− var, threshold+ var]

high = [threshold− var, threshold+ var, 15, 15]

The values represent the left lower and upper, and right upper

and lower values of the trapezoid respectively.

2) Output variables: The objective of our system is to

assess the risk factor on the integer interval [1, 100]. In order

to achieve this, we modeled the risk as shown in figure 6.

Fig. 6. Membership functions for the output variable (risk).
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The membership functions are triangular, and defined as

r(i) = [i, i+ 10, i+ 20], i = 0, 1, 2

r(i) = [i+ 10, i+ 20, i+ 30], i = 3, 4, 5, 6, 7, 8

where the values represent the left, upper and right vertices. It

can be seen that r(3) is moved into the right. This generates

more emphasis when values are higher, and it highlights

situations with higher risk associated.
3) Rules set design: The rules set maps fuzzy inputs (i.e.

after fuzzification) to the fuzzy output (i.e. before defuzzifi-

cation). Traditionally, there is a rule defined for each possible

combination of input variables. In our case, this would gener-

ate 228 rules, which is not tractable computationally. Therefore

we need to adapt the input to reduce the dimensionality of the

rules (i.e. rules pruning).

The input data is collected as time series and the model

captures which meal is over the threshold. But this is not

important for a clinician, as they focus on the percentage of

values over the threshold. Thus, we will reformulate the input

as

in = [postsorted, presorted]

where those vectors represent the input vector sorted descend-

ing.

This mapping (i.e. rules pruning) is equivalent to the com-

plete system from the clinician perspective. Let’s consider the

fasting and postprandial values separately. For fasting, there

are seven values. As they are sorted decreasingly, the possible

combinations are: None of them is over the threshold, or

only the first one, or only the first two, and so on, until all

values are over the threshold. Therefore, there are 8 possible

combinations. Using the same logic for postprandial, there are

22 different possible combinations. As they are independent,

given one set of values for fasting, any set of values for

postprandial is possible. This mapping reduces the number of

rules to 22×8 = 176. For example, let’s assume that there are

2 values over the threshold. Previously there were around 400

different combinations, whereas now all those combinations

are mapped into a 3 different options (both in postprandial,

both in fasting, one in each). We will abuse notation, and use

the naming of 1 to refer to the sorted input vector from now

on.

To define the rules, we assign an output membership value

to intervals of values that are above the threshold. This means

that, if there are three or less values over the threshold, we

assign fuzzy risk r(0), if there are less than five values we

assign risk r(1), and so on. Note that r(3), which we shown

shifted to the right, corresponds to the hard threshold currently

used in the hospital (i.e. 30%). Exact values for this mapping

depend on the implementation, and will be discussed in the

section IV. Rules are associated a weight, corresponding to

w(r(i)) = 1/(i + 1). The weight helps detecting samples

with few values over the thresholds to reduce false positives.

As shown in the current section, the proposed system is

functionally simple, embeds domain expertise and rules from

clinicians and, as we will see in the IV section, is flexibly

able to provide a risk assessment in the considered medical

procedure for GDM.

IV. EXPERIMENTS AND DISCUSSION

The experiments were executed on a single laptop, with an

Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz 8 CPU, 16

GB RAM and Windows10 OS. The Fuzzy Inference System

implementation together with the experimental parameters can

be found in the Python code using the Scikit-Fuzzy library

implementation at https://github.com/csalort/fuzzy-gdm. Fol-

lowing the steps in the README file in the Github repository,

one can generate the paper’s figures.

A. Experiments

In order to augment the available data, we extended the

dataset with artificially generated data, using the same distri-

bution shown in figures 1 and 2 for postprandial and fasting

glucose levels, respectively. 4000 sets of samples (each set

consisting of 28 values) are generated using the extracted

distributions, and 1000 sets are generated using mean + 1
to assess behaviour at larger thresholds, for a total of 5000

evaluation samples. The exact methodology is as follows:

1) Create the model using inputs, outputs, and rules ex-

plained in section III.

2) Generate the samples, detect how many elements in each

sample are above the thresholds, sort them according to

the procedure explained in section III, calculate the risk

level using the model, and store all the elements.

3) Plot the results.

Each element corresponds to one script in the source code.

Fig. 7. Risk assessment simulation. The model assigns values ranging in the
whole domain for different situations.

1) Evaluation and discussion: In figure 7 we can see the

results of the experiments. Data is grouped along the X axis

by the number of elements over the hard threshold. This

is equivalent to the clinician feedback used currently in the

hospital. The Y axis presents the risk level associated to each

observation. The reference lines are drawn at 45 points, and
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8 values, which are used as reference values for diagnosis. A

detailed view can be seen in table I, where we show the metrics

for calculating accuracy (true/false positives/negatives). The

accuracy of the system (defined as (TP + TN) / n, where TP

is true positives, TN is true negatives, and n is the number

of experiments) is 94.68 % which represents that both criteria

agree in most cases, and all the measurements with low or high

risk are reflected in the risk score. Such insights in the data

emerged from the inference and rule evaluation the the Fuzzy

Inference System performs exploiting domain knowledge.

TABLE I
ACCURACY METRICS FOR THE EXPERIMENTS

Clinician input Risk < 45 Risk ≥ 45
No 0.1932 0.0198
Yes 0.0334 0.7536

2) Border cases: In this subsection we will discuss border

cases, particularly the ones where the risk factor is above

a threshold (i.e. 45 points in this case) but the medical

criteria is not, and vice-versa, representing upper left and

lower right quadrants in figure 7. We expect that observations

with a higher assigned risk value map to observations with a

higher mean and standard deviation. We collected two sets of

samples:

slow = {in = [post, pre] | risk(in) ≤ 45& vot(in) ≥ 8}
shigh = {in = [post, pre] | risk(in) ≥ 45& vot(in) < 8}

where vot represents the number of values over the threshold.

Both distributions are normal, and we ran a Kolmogorov-

Smirnov test between the post low and post high, and between

pre low and pre high. Both test result positive (p-values of

2.32e−5 and 6.18e−4 respectively). We also fit the curves, with

mean values of postlow = 6.28, posthigh = 6.37, prelow =
4.77 and prehigh = 4.85. This analysis shows that both sets

are sampled from different distributions, and the set associated

with higher risk values has higher glucose measurements. The

risk system adapts better to each observation, giving a greater

risk to patients with higher glucose level on average.

V. CONCLUSIONS

In this paper we presented a work in progress to improve

monitoring of gestational diabetes mellitus. By using a flexible

and explainable Fuzzy Inference System, we proved that we

obtain comparable results in risk assessment for extreme cases

(low and high), and we achieve personalized diagnosis in

border cases. Some benefits of our system include simplicity

and interpretability, as its core computational base uses a

simple set of rules, combining input variables, easy to explain

in daily language. Our next steps will focus on collecting more

data, and using it to improve the model, based on observations.

We will also collect feedback from the medical team using the

system, in order to improve the expert knowledge embedded

into the model. Finally, we will present the infrastructure that

allows the real-time monitoring when it reaches a proper level

of maturity.
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