
Mobile Robot Fault Tolerant Control.
Introducing ARTEMIC.

CRISTIAN AXENIE
Dunarea de Jos University

Department of Automation and Industrial Informatics
Stiintei Street, Galati

Romania
cristian.axenie@gmail.com,http://robotics.viviti.com

Abstract: Real-time applications should timely deliver synchronized data-sets, minimize latency in their response
and meet their performance specifications in the presence of disturbances and faults. The fault tolerant behavior
in mobile robots refers to the possibility to autonomously detect and identify faults as well as the capability to
continue operating after a fault occurred. This paper introduces a real-time distributed control application with
fault tolerance capabilities for differential wheeled mobile robots, named ARTEMIC. Specific design, development
and implementation details will be provided in this paper.

Key–Words: Mobile Robotics, Fault Tolerant Control, Sliding Mode, EKF, Real Time Linux, Distributed Control
January 13, 2010

1 Introduction

By accepting the challenge to ensure fault tolerant
real-time control of a self designed and built wheeled
differential mobile robot the author has been able to
develop a hierarchical software application that min-
imizes costs and supports extensibility. Analytical
software redundancy is implemented rather than hard-
ware redundancy for fault detection and identification
for the minimal robot structure. The main applica-
tion is designed on a distributed, client-server pattern,
based on a TCP/IP wireless communication. The ap-
plications base level is built over the interface with
the actuators (H-bridge MOSFET driver and 2 DC
motors) and sensors (encoders and bumpers) found
in the robots structure. The next level is the control
and fault tolerance level, to the extent that the con-
trol algorithm is implemented here and loops concur-
rently with the monitoring and fault tolerance task to
ensure the robot’s autonomy and performance in tra-
jectory tracking operation. The fault tolerant module
is based on an set of Extended Kalman Filters used to
estimate the current robot position and is using a resid-
ual computation and a statistical analysis to determine
if a fault occured in the system and to discriminate
between the faults. The third level is a responsible
with the communication task, to the extent that it im-
plements a data server and a control server to ensure
reliable data and command flows over a wireless net-
work to the other nodes in the distributed system. The

client application was designed to meet some specific
requirements. The first type of client is responsible of
interacting with the robot operation, basic start, stop,
pause actions of the robot, but also with monitoring
the status of the robot by receiving specific packets
with sensor data. Due to the need of interactivity when
injecting the faults a software fault injection frame-
work was developed at this level. It’s purpose is to in-
ject a certain fault at a certain moment in time choosed
by the client user. ARTEMIC or Autonomous Real
Time Embedded Mobile robot Intelligent Controller
was developed as the diploma thesis project by the au-
thor.

2 Server-side application description

Next an extended description of the server-side appli-
cation running on the robot embedded computer is
given. All architectural and functional aspects will
be presented, with focus on both software develop-
ment elements and implemented control engineering
concepts. The server-side application is a real-time
Linux C/C++ application. The real-time capabilities
were obtained at the OS level by modifying the stan-
dard Linux kernel with the RTAI (Real Time Appli-
cation Interface) patch based on ADEOS (Adaptive
Domain Environment for Operating Systems)to the
extent that the enhanced micro-kernel can ensure a
proper preemptibility level and I/O latency minimiza-

RECENT ADVANCES in SIGNAL PROCESSING, ROBOTICS and AUTOMATION

ISSN: 1790-5117 213 ISBN: 978-960-474-157-1

tion. The hardware interface with the sensors and
actuators is ensured by a data acquisition card (NI-
PCI6024E) managed by a powerful kernel-space real-
time driver and a rich API in user-space, both part
of the COMEDI (Linux COntrol and MEasurement
Device Interface). To properly manage the execution
of the two main tasks, namely the control task and
the monitoring task the application is organised on
an abstract Grafcet (Graphe Fonctionnel de Control
des Etapes et Transitions) which supports the higher
level parallelism in the execution of the two tasks.
The control task is comprised of two inner speed con-
trol PID loops (running at 50ms) for the 2 DC mo-
tors and a main robot position control loop based on
a sliding mode controller(running at 200ms). Con-
currently, the monitoring and diagnosis task receives
sensor data which is then processed by a set of 5 Ex-
tended Kalman Filters every 50 ms. By examining the
real and predicted data the application can decide if
a fault occured and what kind of fault based only on
sensor information using a simple thresholding mech-
anism and a statistical test on the residuals. Next an
architectural overview of the whole application is de-
picted in figure 1.

Figure 1: Main application architecture.

2.1 Base level description

The base level is the main support for the control and
monitoring tasks to the extent that the sensors and ac-
tuators are interfacing with the software by the real-
time data I/O features given by the Linux+RTAI and

COMEDI tools. Next the presentation shall focus on
the base level of the server-side application running
on the embedded robot computer. The specific I/O
functions are presented in the application context. The
server-side application is described in figure2.

Figure 2: Server-side application architecture.

To properly understand how the robot control ap-
plication works, a typical operation context is de-
scribed, emphasizing class communication during ex-
ecution. Each sampling period the application reads
the data through the DAQ card from the encoders and
computes, according to the read values, a control sig-
nal for the 2 DC motors. The specific functions to ob-
tain a value from a sensor or to set a value to an actua-
tor are comprised in the Counter, Sensor and Actuator
classes. The outer sliding mode loop computes the
control signal for the robot to achieve the next point
in the trajectory in a timely manner and then the com-
puted control signal is transformed in speed set-points
for the inner PID loops. The monitoring and diagno-
sis task that runs concurrently is fed with sensor data,
in fact the odometry computations and each sampling
period the 5 EKF are testing if a fault occured and if
occured, what kind of fault is it. The fault tolerant
control module is then issuing specific warning mes-
sages to the client application regarding the current
status of the robot operation. Next an in depth de-
scription of the two tasks running on the embedded
robot controller is given.

2.2 Control algorithm level description

As mentioned earlier the robot is operating in trajec-
tory tracking mode so its main objective is to follow
a certain trajectory under time constraints. The con-
trol algorithm goal is to minimize the position errors,
namely the longitudinal error, the lateral error and the
heading error. To ensure proper error convergence in

RECENT ADVANCES in SIGNAL PROCESSING, ROBOTICS and AUTOMATION

ISSN: 1790-5117 214 ISBN: 978-960-474-157-1

the presence of disturbances and modelling uncertain-
ties a sliding mode controller was choosed. A sliding
mode controller based on the kinematic model of the
robot was used. By using a sliding mode controller
a trade-off between tracking performance and para-
metric uncertainty was made, to the extent that it pro-
vides a good solution in maintaining the stability and
consistent performance in the face of modelling im-
precision and disturbances. Next the complete robot
control system is presented in figure3.

Figure 3: Control system architecture.

The robot should track the reference parametrized
curve with time constraints and so real-time control
signal computation is critical. The main idea behind
the trajectory tracking operation mode considers a vir-
tual robot that tracks the reference trajectory with no
error and ”pulls” the real robot after it to the ex-
tent that the controller reacts to minimize the errors.
Let the robot be defined by the next position vec-
tor (state vector) [xr, yr, θr]T and we define the error
vector as [xe, ye, θe]T = [xd, yd, θd]T − [xr, yr, θr]T ,
where [xd, yd, θd]T is the virtual robot state vector, the
set-point vector to track. Next the robot’s kinematic
model and tracking error computation is considered.

The main objective was to design a stable and ro-
bust controller for robot position control that should
output a control signal vector [vc, ωc] (linear and an-
gular speeds) in the presence of disturbances. The er-
ror derivative is given by

ẋe = −vd + vrcos(θe) + yeωd
ẏe = vrsin(θe)− xeωd
θ̇e = ωr − ωd

where the set-point values for the speed control
loops are vd and ωd. The set-point for the main robot
position control loop is generated by a trajectory plan-
ner based on 5th degree equations for smoothing the
robot’s operation and control effort. The trajectory
planner outputs linear and angular speed and acceler-
ation set-points at each sampling period. These val-
ues are transformed using inverse kinematics equa-
tions in vectorial form [xd, yd, θd]T . The next step
was to design the switching surfaces for the sliding
mode controller such that it can ensure proper error
convergence. The first switching surface was choosed
to ensure lateral error convergence and is given by the
next equation s1 = ẋe + k1xe. To ensure proper lon-
gitudinal and heading error convergence the second
switching surface combines the two objectives and is
given by s2 = ẏe + k2ye + k0sgn(ye)θe, where the
k1, k2, k3 parameters are specific weights associated
to each error component. Practically the control sig-
nal could be computed using ṡ = −Qs − Psgn(s)
where Q,P are positive constant values that are deter-
mining the error convergence speed. By deriving the
surfaces equations and replacing the error components
one can easily obtain the control signal vector under
the form of

v̇c = −Q1s1−P1sgn(s1)−k1 (̇xe)−ω̇dye−ωdẏe+vr θ̇esin(θe)+v̇d

cos(θe)

ωc = −Q2s2−P2sgn(s2)−k2 (̇ye)−v̇rsin(θe)+ ˙ωdxe+ωdẋe

vrcos(θe)+k0sgn(ye)
+

ωd

To ensure a good convergence speed of the robot
state vector to the switching surface (which in fact
gives the desired system dynamics) and also to el-
liminate chattering (caused by fast control signal
switches) the P and Q terms should be cautiously
choosed. To ensure the stability of the system we de-
fined a Lyapunov candidate function given by V =
1
2s
T s and with V̇ = s1ṡ2+s2ṡ1 = −sTQs−P1|s1|−

P2|s2| the main condition is that V V̇ < 0 achieved if
Qi >= 0 and Pi >= 0. As mentioned earlier the slid-
ing mode controller outputs angular speed set-points
for the inner PID loops. The PID controllers for the
two DC motors were implemented using first-order-
hold discretization method. The PID loops are run-
ning at 20Hz and the specific parameters were tuned
to meet a fast response time (0.5s) and a small over-
shoot (10%). Next some results from the closed loop
fault-free operation of the robot are given to analyze
the robot behaviour on a specific trajectory.

RECENT ADVANCES in SIGNAL PROCESSING, ROBOTICS and AUTOMATION

ISSN: 1790-5117 215 ISBN: 978-960-474-157-1

Figure 4: Robot operation in trajectory tracking with
sliding mode controller in fault free operation.

The real robot trajectory is represented by a con-
tinuous line and the reference trajectory is given with
crosses. The movement direction is indicated by ar-
rows. As one can see the position error is kept in
acceptable limits by the robust sliding mode con-
troller and the robot can achieve it’s objective in time.
Once more one can observe that good performance is
achieved in using the sliding mode controller. Another
important aspect regards the analysis of the error com-
ponents in the fault free operation, because it can be
considered as a proper validation for the controller.
Next the three error components are depicted.

Figure 5: Robot longitudinal error (xe).

Figure 6: Robot lateral error ye.

Figure 7: Robot heading error θe.

One can see that the error convergence is prop-
erly ensured by the controller. The longitudinal error
in the fault free operation is under 3cm, the lateral er-
ror is under 6cm and the heading error in under 8 rads.
Experiments have shown that even for simpler trajec-
tories (simple 2m line, 0.75m radius circle) the con-
troller behaves well and depite the fact that the robot
structure had some hardware limitations (small en-
coder resolution, 500PPR) the real-time control goals
were met even for slightly high sampling periods;all
the results are validated with the earlier error analy-
sis. Following the next level of the application is pre-
sented, namely the fault detection and identification
module and the support for fault tolerant control.

2.3 Monitoring and diagnosis level descrip-
tion

Due to hardware limitations in injecting faults the ap-
plication is also responsible to inject faults by soft-
ware using a fault injection framework. By benefiting
of a certain degree of robustness given by the slid-
ing mode controller the application resides on a sim-
ple mechanism for fault detection, identification and
support for control reconfiguration based on the Ex-
tended Kalman Filter (EKF). So, the application im-
plements a set of 5 EKF that form the fault detec-
tion and identification module. The current applica-
tion considers a fault benchmark comprised of faults
manifested by system’s parameter variation specifi-
cally mechanical faults that alter the robot behaviour.
Hence two fault classes were defined each containing
two types of faults. The first class of faults introduces
the flat tyre fault for each of the robot wheels. At the
implementation level this fault exhibits by diminish-
ing the wheel radius with a certain value. As a con-

RECENT ADVANCES in SIGNAL PROCESSING, ROBOTICS and AUTOMATION

ISSN: 1790-5117 216 ISBN: 978-960-474-157-1

sequence the whole kinematic model of the robot is
modified and visible modifications in the robot’s be-
haviour will be present. The second class of faults
introduces a periodic variation of the wheel radius (a
bump, caused hypotetically by an object attached to
the wheel). Hence, for a small time period the varia-
tion will manifest itself and alter the robot operation.
As mentioned earlier a fault injection framework was
implemented and its main purpose is to alter the val-
ues from the sensors in odometry specific computa-
tions. Hence, when no fault is injected the robot will
behave normally (as presented when the control level
was described) but when a fault was injected the robot
position determining system (in fact the control sys-
tem feedback, odometry) will feed altered data to the
controller as if a physical fault occured. Next a depic-
tion of the fault detection and identification module is
given.

Figure 8: Fault detection and identification module.

Each of the five EKF encapsules a kinematic
model of the robot but with different parameters. The
main idea resides on the fact that for the same input
vector, z, with noise, each filter generates a predic-
tion of the robot’s state vector. Each filter is asso-
ciated with a certain fault type. EKF0 is the nomi-
nal filter corresponding to the fault free robot opera-
tion. EKF1 filter contains the same robot kinematic
model but with modified parameters to emphasize the
right tyre flat fault, so the right wheel radius has a
smaller value. Hence, the prediction of EKF1 will
be the robot state vector if a right tyre flat occured.
The EKF2 filter is similar to EKF1 excepting it en-
capsules the left tyre flat fault specific model. In the
same way the other two filters associated with the sec-
ond fault class, EKF3 and EKF4, are predicting the

robot’s state vector in the presence of a second fault
class fault. Besides the state estimate each EKF gen-
erates a measurement vector estimate during the pre-
diction stage, which is used in the correction stage of
the filter. Basically the detection method is based on a
nominal residual computation and a simple threshold-
ing test on the nominal residual which can output that
a fault occured. It is the only one affected by the fault
occurence so it will step out from some preset value
intervals. When identifying the fault the applilcation
just finds the smallest residual from the 5 ones, be-
cause when a fault occurs the main measurement vec-
tor is altered and it nears the predicted measurement
vector by the EKF encapsuling that fault behaviour.
Next, specific implementation details of the EKFs are
presented. Starting from the generic structure during
the implementation some simplifying hypothesis were
issued and we know that Q is the process noise covari-
ance matrix, R is the measurement covariance matrix,
σx = σy = σθ = 0.1 are the standard deviations for
the process noise, σmeas = 0.01 is the standard de-
viation of the measurement noise. To correctly detect
if a fault occured some statistical tests on the residual
are required. The statistical parameters of the residual
(mean and variance) will be compared on-line at each
sampling period with the values obtained for these pa-
rameters in fault-free operation. In fault-free opera-
tion the residual is a a white noise sequence with 0
mean and ηk = Hk(x̂−k)P−k H

T
k (x̂−k) + R variance.

Basically if a fault occurs in the system it will determ-
nine a modification of the next residual based standard
sequence,

ηsk = (ηk = Hk(x̂−k)P−k H
T
k (x̂−k)+R)−1/2(yk−

hk(x̂−k)) = η
−1/2
k rk

The goal is to determine the estimate of the real
value of a sample given by

ˆ̄ηs = 1
NΣηsj , where N is the number of samples.

So, in the hypothsesis H0 of no fault ˆ̄ηs has a
gaussian distribution with 0 mean and 1/N covariance.
Over a certain acceptance threshold the H0 hypothe-
sis is no longer true and so a new hypothesis H1 is
now true marking a fault occurence. Next some ex-
perimental results are presented. First it is useful to
analyze the residuals generated by the nominal filter
when a fault occurs, in fact these residuals are those
predicted by the fault embedding filters, from the mo-
ment the fault occurs. For example if a right tyre flat
fault occurs at sample 100 in the execution the residual
evolution from 100th sample is the predicted residual
by the EKF1.

RECENT ADVANCES in SIGNAL PROCESSING, ROBOTICS and AUTOMATION

ISSN: 1790-5117 217 ISBN: 978-960-474-157-1

Figure 9: Residual analysis for first fault class.

From this residual analysis one can see that each
EKF is sensitive to a certain fault type and using
these properties the detection and identification mod-
ules were built. Assuming that a right tyre flat fault
was injected at moment t=10s and the new radius of
the wheel is 3cm smaller than the initial value the be-
haviour of the robot is altered as one can see in the
next figure.

Figure 10: Robot faulty operation vs. reference tra-
jectory.

Next an extended position error analysis over the fault
free and faulty operation is given (red marks fault free
operation and blue the faulty operation).

Figure 11: Longitudinal error comparison fault-
free/faulty operation.

Figure 12: Lateral error comparison fault-free/faulty
operation.

Figure 13: Heading error comparison fault-free/faulty
operation.

As one can see there are major variations from the
nominal behaviour after a fault occured in the system.
It is important to mention that the thresholding mech-
anism reacts if at least two components of the resid-
ual vector are bigger than the preset values. So, the
fault could be visible in all the residual components
or not.As a typical operation context when a fault is
detected, it is then identified and the client application
is informed what kind of fault occured. At the mo-
ment only one fault can be detected and identified, no
fault queue or priority system are implemented. Fol-
lowing a brief description of the client application is
given.

3 The client-side application descrip-
tion

The two main components of the application are
linked through a wireless communication ensuring the
client application to be responsible with the external

RECENT ADVANCES in SIGNAL PROCESSING, ROBOTICS and AUTOMATION

ISSN: 1790-5117 218 ISBN: 978-960-474-157-1

events that determine the robot operation. It imple-
ments a similar structure with the embedded applica-
tion and supports the fault injection framework. Next
a synthetic image of the Java GUI client application
architecture is given.

Figure 14: Client-side Java application architecture.

Besides the interactive task of injecting faults the
client application is responsible to choose the Grafcet
structure that encapsules the execution rules for the
control algorithm and and the specific supported ac-
tions (start/pause/stop) for the robot operation, also
it offers the possibility to choose between multiple
trajectories and to visualize the robot’s current posi-
tion. Using a full load of the embedded system latency
measurements were taken. So, by using a 50ms sam-
pling period for the inner control loop and the moni-
toring and diagnosis tasks and a 200ms sampling pe-
riod for the robot position controller good average ms
level latencies were obtained. Following a short suma-
rizing overview over the paper is given emphasizing
the main advantages and some future work ideas.

4 Conclusions and future work

ARTEMIC was designed as a flexible application ded-
icated to mobile robotics fault tolerant control. Its
architecture is open and supports extensibility at a
”plug-an-play” level because at the lowest level it
supports and offers a simple mechanism to add new
hardware to the robot and provides a generic and
compatible interface with the hardware. As future
work a port of the developed application from the
current Intel Celeron based embedded computer to a
MPC8315ERDB PowerPC platform is started. The
new platform uses an enhanced RTOS named Xeno-
mai that is a super-set of RTAI and it provides bet-

ter performance and it is dedicated to embedded arch-
tures. itec Another directon in the future work regards
the possibility to combine multiple fault detection and
identification methods to gain the advantages of each
composing method and obtain a hibrid and efficient
mechanism.This approach shall be combined with an
fuzzy adaptive sliding mode controller to the extent
that it can self-adjust it’s parameters based on optimal
criteria to ensure faster error convergence. Next figure
introduces the ARTEMIC power robot.

Figure 15: The ARTEMIC powered mobile robot.

References:

[1] Patton R., Frank P., Clark R. Fault Diagnosis in
Dynamic Systems:Theory and Applications Prentice
Hall, New York, 1989.

[2] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani,
Giuseppe Oriolo Robotics, Modelling, Planning and
Control Springer, 2009

[3] Razvan Solea, Urbano Nunes Trajectory Planning
and Sliding Mode Control for WMR Trajectory Track-
ing and Path Following Rescpecting Human Comfort
Travel CONTROLO Conference Portugal, 2006.

[4] Mayback P.S.,Cox I.J.,Wilfong G.T.(eds) The Kalman
Filter:An Introduction to Concepts in Autonomous
Robot Vehicles Springer-Verlag, 1990

[5] Burns A., Wellings A. Real-Time Systems and Pro-
gramming Languages AddWesley, California, 1996.

[6] Utkin V.I. Sliding Modes in Optimization and Control
Problems Springer-Verlag, New York, 1992.

RECENT ADVANCES in SIGNAL PROCESSING, ROBOTICS and AUTOMATION

ISSN: 1790-5117 219 ISBN: 978-960-474-157-1

View publication statsView publication stats

https://www.researchgate.net/publication/224161687

