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Abstract—Virtual Reality (VR) sensorimotor rehabilitation is
still in infancy but will soon require avatars, digital alter-egos of
patients’ physical selves. Such embodied interfaces could stimu-
late patients’ perception in a rich and highly customized envi-
ronment, where sensorimotor deficits, such as in Chemotherapy-
Induced Peripheral Neuropathy, could be corrected. In such
scenarios, motion prediction is a key ingredient for realistic
immersion. Yet, such a task lives under hard processing latency
constraints and the inherent variability of human motion. We
propose a neural network meta-learning system exploiting the
underlying correlations in body kinematics with potential to
provide, within latency guarantees, personalized VR rehabilita-
tion. The unsupervised meta-learner is able to extract underlying
statistics of the motion data by exploiting data regularities in
order to describe the underlying manifold, or structure, of motion
under sensorimotor deficits. As avatars are patients’ proxies
in VR, and the direct extension of themselves into the virtual
domain, their digital representations have to be naturally bound
to their individual motion patterns and self-perception. Following
this goal, we demonstrate, through preliminary experiments the
potential of such a learning system for adaptive kinematics esti-
mation in personalized rehabilitation VR avatars. Index Terms—
Neural Networks, Virtual Reality, Inverse Kinematics, Meta-
Learning, Rehabilitation

I. INTRODUCTION

Chemotherapy-induced peripheral neuropathy (CIPN) is a

common side effect of cancer treatment and has a large

incidence (as high as 83% of breast cancer patients) [1].

Resulting sensory and motor dysfunctions often lead to func-

tional impairments like gait or balance disorders. As an

alternative to drug treatments, sensorimotor training has the

potential to influence neuromuscular mechanisms for improved

balance performance [2], [3]. A practical solution to screen

sensorimotor degradation due to CIPN was recently proposed

in [4]. Yet, using only physician guided verbal instructions and

inertial sensory data, rehabilitation of balance disturbances was

not capturing individual patient motion patterns. Focusing on

a rehabilitation protocol exclusively based on visual computer-

feedback balance training (VCFBT), [5] proved that drug

based treatments are not effective for the treatment of CIPN

symptoms such as weakness or loss of sensory modalities, in-

cluding vestibular and proprioceptive. Visual-based treatment

was more effective due to the visuo-proprioceptive training,

capable of providing sensory support despite the vestibular

deficit. Following the visual-based rehabilitation approaches,

improvements in software, hardware and reduction in cost

have made Virtual Reality (VR) a practical tool for immersive,

three-dimensional (3D), multisensory experiences for chronic

pain and CIPN patients [6]. Proven by many studies, VR-

based training has the potential to influence neuromuscular

mechanisms for improving balance and motion performance

in patients with sensorimotor deficits [7]. In such applications

there is a strong emphasis on motor behaviour by measuring

motor output congruence between physical and virtual envi-

ronments. It is assumed that the fidelity of virtual to physical

world movements is vital for rehabilitation, in order to promote

the recovery of movement quality, neuromuscular gait and

balance properties. In this work we show that such an initial

effort is possible through an individualized assessment of the

deficit level and a corresponding correction signal for stimula-

tion. We achieved that by employing modern machine learning

algorithms capable of extracting underlying correlations in

motion kinematics components. Converging to the underlying

structure of the rehabilitation task, the meta-learning system

extracts the structure and individual peculiarities of patient

motion for a personalized, dedicated rehabilitation task, such

as in CIPN. This is an initial effort to combine meta-learning

with regression algorithms into a flexible platform targeting

avatar kinematic reconstruction for effective CIPN VR-based

rehabilitation.

II. PROBLEM STATEMENT

Adaptive sensorimotor control for gait and balance, in

rehabilitation, requires the integration of sensory information

in order to assess the position of body in space and subse-

quently generate forces for controlling body position. This is

a challenge in CIPN patients. A provoking issue in creating

CIPN rehabilitation environments in VR is determining which
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aspects of the movements made in these environments need

to be similar or better than those made in typical physical

environments. In both worlds user-environment interaction

provides a sense of timing and spatial location that leads to

appropriate 3D movements. Such a spatio-temporal estima-

tion task is a perfect candidate for meta-learning which is,

basically, capable of learning the manifold on which possible

body kinematics configurations lie. After training on multiple

similar tasks, the meta-learner would adapt in few shots for a

timely and robust position estimation. This is highly relevant,

as, in VR avatar-based CIPN rehabilitation, rendering and

processing latencies are crucial, impacting the perception of

the patient and the results of the rehabilitation. Despite the

proliferation of lightweight, high-resolution and high frame-

rate VR systems, a remaining obstacle is how to get the user

to feel truly immersed in the experience. Under harsh limits

of motion-to-photon latency [8], such systems must solve

high-resolution inverse kinematics chains of user motion. Yet,

predictive markers for CIPN motor treatment strategies are not

well-characterized [1], despite the potential VR systems have

in providing a highly parametrized and flexible world designed

by the physician. The objectives of our work are multiple:

• monitoring and personalized CIPN rehabilitation strategy

as meta-learning extracts relations among the different

sensory and motor quantities describing patient’s motion

from a limited number of samples;

• support personalized learning of motion patterns invari-

ants for continuous neuromuscular diagnosis in CIPN;

• to use meta-learning to extract the structure in patient’s

motion characteristics in the controlled VR lab envi-

ronment and then transfer to a personal, home-use VR

system;

• support traditional neuropathy assessment algorithms to

guide the neurotoxic chemotherapy treatments through a

motor system assessment.

These objectives materialized in a series of (initial) contribu-

tions (i.e. introduced in the next sections):

• the development of a neural network based meta-learning

system for sensorimotor correlations extraction;

• the integration of the neural learning system with the VR

avatar generation system;

• the deployment of an end-to-end avatar reconstruction

framework for precise full-body motion analysis and

kinematics extraction;

• the initial tests of the framework in a simple test-bed

similar to rehabilitation procedures.

III. RELATED WORK

A. Meta-learning approaches

Machine learning models require a large number of training

examples, especially in complex tasks such as human kinemat-

ics learning. Humans, in contrast, learn new concepts and skills

much faster and more efficiently [9]. Consider the problem of

learning to control motion of a table tennis paddle. It would

be useful if during practice, we learned a model that had

a structure with hidden states that could also help us with

learning control of a tennis racket. This should be possible

because the two objects are rigid-body inertial systems with

dynamics that are similar in structure. If we could somehow

discover this structure while playing table tennis, it could

vastly speed up our learning of tennis.

In this work, we consider the problem of structural learning

or meta-learning for precise avatar kinematics reconstruction

in CIPN rehabilitation VR. We expect that a good meta-

learning model is capable of generalizing well to new tasks and

new environments that have never been encountered during

training time. This adaptation process is essentially a short

learning session with a limited exposure to the new task

configurations. Eventually, the adapted model can complete

new tasks. In our scenario a good meta-learning model should

be trained over a variety of motor tasks and optimized for

the best performance on a distribution of tasks, including

potentially unseen rehabilitation tasks or patients. Typically

such tasks need to be described by both feature vectors and

true labels, whereas the highly variable real-world scenarios,

such as personalized motor CIPN rehabilitation, are governed

by an unsupervised setting.

Despite its infancy, meta-learning comes in three flavours:

metric-based, model-based, and optimization-based. The core

idea in metric-based meta-learning is similar to nearest neigh-

bours algorithms (i.e., k-NN classifier and k-means clustering)

and kernel density estimation. The predicted probability over a

set of known labels is a weighted sum of labels of support set

samples. The weight is generated by a kernel function, measur-

ing the similarity between two data samples. A successful im-

plementation of the metric based meta-learning paradigm is the

Siamese Neural Network (SNN). The architecture is composed

of two twin networks and their outputs are jointly trained on

top with a function to learn the relationship between pairs

of input data samples. In a practical setting, [10] proposed

a method to use the SNN for one-shot image classification.

Another successful instantiation are the Matching Networks

[11] capable to learn a classifier for any given (small) support

set. Similar to other metric-based models, the classifier output

is defined as a sum of labels of support samples weighted

by attention kernel which should be proportional to a sample

similarity. Moreover, similar to SNNs, in Relation Networks

(RN) [12] the relationship is not captured by a simple L1

distance in the feature space, but predicted by a CNN classifier

and the objective function is MSE loss instead of cross-

entropy. Finally, Prototypical Networks [13] use an embedding

function to encode each input into a high-dimensional feature

vector. A prototype feature vector is defined for every class

as the mean vector of the embedded support data samples in

this class.

From a different perspective, model-based meta-learning

models make no assumption on the form of the probability dis-

tribution of the parameters given the input and output. Rather

they depend on a model designed specifically for fast learning

a model that updates its parameters rapidly with a few training

steps. ”Memory-Augmented Neural Network” (MANN) is a
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typical such model using an explicit storage buffer, making it is

easier for the network to rapidly incorporate new information

and avoid forgetting in the future. Training such a system [14]

assumes that the memory is forced to hold information for

longer until the appropriate labels are presented later. Another

such model are the Meta Networks [15], or MetaNet, a meta-

learning model with architecture and training process designed

for rapid generalization across tasks. The rapid generalization

of MetaNet relies on ”fast weights”. This faster way to learn

utilizes one neural network to predict the parameters of another

neural network and the generated weights are called ”fast

weights”. MetaNet uses a parametric embedding function that

encodes raw inputs into feature vectors similar to SNNs.

Looking at optimization-based approaches, deep learning

models are representative candidates, learning through back-

propagation of gradients. However, gradient-based optimiza-

tion is neither designed to cope with a small number of

training samples, nor to converge within a small number of

optimization steps. A representative optimization based meta-

learner is the LSTM Meta-Learner [16]. The meta-learner was

modelled as a LSTM, because: a) there is a similarity between

the gradient-based update in backpropagation and the cell-

state update in LSTM; and b) knowing a history of gradi-

ents benefits the gradient update. One recent development,

the MAML, short for Model-Agnostic Meta-Learning [17],

is a fairly general optimization algorithm, compatible with

any model that learns through gradient descent. The meta-

optimization step relies on second derivatives. In response

to recent work in meta-learning [17], [18] proposed training

Reptile, a meta-learner on a distribution of similar tasks, in the

hope of generalization to novel but related tasks by learning

a high-level strategy that captures the essence of the problem

it is asked to solve.

B. VR kinematics tracking

The kinematic validity of movements recorded with marker-

less camera-based motion tracking systems is an area of

growing interest because of the development of portable VR

systems for upper and lower limb motor rehabilitation. Several

of these systems use the Kinect (Microsoft Xbox) camera that

reconstructs the user’s gestures using a simplified 15 joint

skeleton in real time [19], [20], [21]. Compared to planar

joint kinematics recorded with a 24 camera Vicon system, [20]

reported that angle errors using Kinect camera tracking ranged

from 7.1°to 13.2°for movements in three planes (sagittal,

coronal, and transverse). Similarly, [22] determined the extent

to which Kinect position tracking matched that recorded by an

Optotrak motion tracking system. The mean error for tracking

movement of the whole body was 3.9 cm. We complement

this overview also in our analysis by comparative evaluation

of other tracking systems.

IV. MATERIALS AND METHODS

In the following section we introduce the technical setup

used in our preliminary experiments with the meta-learner for

VR avatar reconstruction in rehabilitation tasks.

A. Unsupervised Neural Meta-learning

Deep neural networks excel in regimes with large amounts

of data, but tend to struggle when data is scarce or when they

need to adapt quickly to changes in the task. However, many

recent meta-learning approaches [17], [18] are extensively

hand-designed, either using architectures specialized to a

particular application, or hard-coding algorithmic components

that constrain how the meta-learner solves the task. We intro-

duce a novel unsupervised meta-learner capable of extracting

underlying, unknown, relations among the different sensory

streams, by observing and characterizing an user’s avatar

reconstruction in VR. The potential of such a system alleviates

the need for large labelled datasets (e.g. unable to extract

a relevant sample from clinical use) by using unsupervised

learning. The core contribution of this work is proposing a

novel meta-learning paradigm on top of [23]. The system

extracts underlying correlations in incoming sensory streams

describing the VR avatar kinematics for a certain motion task.

The goal is to learn the structure of such a task in order

to accelerate learning for tasks with similar structure. The

meta-learning model is based on Self-Organizing Maps (SOM)

[24] and Hebbian Learning (HL) as main ingredients for

extracting underlying correlations in sensory data describing

motion kinematics. In the following, we motivate our choices

and design. We employed Self-Organizing Maps (SOMs) in

Fig. 1: Basic meta-learning model: SOM extract underlying

statistics of the sensorimotor data describing patient’s motion,

whereas the HL captures the temporal correlations of such

sensorimotor data.

order to extract the statistics of the incoming data and encoding

619



sensory samples in a distributed activity pattern, as shown

in Figure 1. Using the SOM distributed representation, the

model learns the boundaries of the input data, such that,

after relaxation, the SOMs provide a topology preserving

representation of the input space. In our approach each neuron

not only specialises in representing a certain (preferred) value

in the input space, but also learns its own sensitivity (i.e.,

tuning curve shape). Given an input sample, sp(k) at time

step k, for each i-th neuron in the p-th input SOM, with

the preferred value wp
in,i and ξpi (k) tuning curve width, the

sensory elicited activation is given by

api (k) =
1√

2πξpi (k)
exp(

−(sp(k)− wp
in,i(k))

2

2ξpi (k)
2 ). (1)

The winner neuron of the p-th population, bp(k), is the one

which elicits the highest activation given the sensory input at

time step k and together with neighbouring cells are updated

under a decaying learning rate α(k) as,

Δwp
in,i(k) = α(k)hp

b,i(k)(s
p(k)− wp

in,i(k)). (2)

The meta-learner can also learn the statistics of the input

data and encode them in tuning curves. Each neuron’s tuning

curve is modulated by the spatial location of the neuron, the

(Euclidian) distance to the input sample, the interaction kernel

size, and the learning rate,

Δξpi (k) = α(k)hp
b,i(k)((s

p(k)− wp
in,i(k))

2 − ξpi (k)
2). (3)

In a simple example, the meta-learner simultaneously extracts

the hidden relation between two sensors and tuning curves

(i.e. 3rd power law describing the motion of the filtered

left hand VR controller), as shown in Figure 2. Figure 2b

shows that higher input probability distributions, as shown in

Figure 2a, are represented by a large number of sharp tuning

curves, whereas lower or uniform probability distributions are

represented by a small number of wide tuning curves. This

allows our system to generalize and extract the structure of a

task from the data distribution and its temporal dimension. The

second component of the meta-learner is the Hebbian Learning

network [25]: a fully connected matrix of synaptic connections

between neurons in each input SOM, such that the projections

propagate between the first SOM units and the second SOM

units in the network. It is responsible for extracting the co-

activation pattern between the input layers (i.e., SOMs), as

shown in Figure 3, and for eventually encoding the learned

relation between the sensors, as shown in Figure 2b. Func-

tionally, connections between uncorrelated (or weakly corre-

lated) neurons in each population are suppressed (i.e., darker

color-lower value) while correlated neurons’ connections are

enhanced (i.e., brighter color-higher value). Formally, Hebbian

connection weights, wp
cross,i,j , between neurons i, j in each of

the input SOM population are updated using

Δwp
cross,i,j(k) = η(k)(api (k)− api (k))(a

q
j(k)− aqj(k)), (4)

In our meta-learner, self-organisation and correlation learning

processes evolve simultaneously, such that both representation

Fig. 2: Basic capabilities: a) learn underlying data distribution

and encode it in tuning curves and learn the underlying

functional correlation between sensory stream unsupervisedly;

b) The structure is encoded in the learn pattern of neural

activation.

Fig. 3: Model internals.
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and correlation pattern are continuously refined to maintain

the learned structure. The core idea is to extract rules on how

the user motion parameters covary as such variation may not

span the entire possible space but lie on a low dimensional

manifold - the structure.

B. Technical setup

The experimental setup is composed of several modules, as

shown in Figure 4. We used a HTC Vive HMD which comes

with two hand controllers. Orientation and position of these

devices are tracked via an external infrared tracking setup.

Altogether, 18 degrees of freedom (DOFs) are captured by

HTCs external tracking system. The first and second modules

use the data of the VR tracking system (i.e. global rotation

of the headset and two vectors from the users head to the

hand positions) to learn the inverse kinematics (IK) of the

upper-body, global rotation and position of a user inside VR.

The third and fourth modules focus on the RGB video data

to reconstruct the lower body pose of the user’s avatar. The

last module is responsible to render the avatar inside the

virtual world from the global trunk rotation, the local rotations

for the neck, elbows, shoulders, and both collar joints of

the IK regressor output. Quaternions were used to represent

3D-rotations as a point on a hypersphere in a R4 space.

Every rotation in 3D-space can be then expressed by one

unambiguous point on the hypersphere. To meet this condition,

an additional normalization layer is added right before the

output layer of the IK regresor. The network is basically

a ResNet-50 trained using the rotational difference between

the predicted and the ground-truth rotations (i.e. roll, pitch,

yaw) the CMU Database [26]. It contains over 2,500 motion

capturing sequences. Within Unity 3D, all motions are mapped

to the SMPL skeleton [27] with a fixed default skeleton size.

The whole dataset is split in a test set (activities 1 to 30) and

a training set (activities 31 to 144). To train the meta-learner,

we used the motion data from the VR tracker system, namely

VRT (HMD and two hand controllers IR tracker) and the VRI

(HMD and two hand controllers inertial data), as shown in

Figure 6. Note that the meta-learner is trained on live data from

the VR tracking system (i.e. ample rotations, up to 50 degrees

roll (0.9 rad) and 34 degrees pitch (0.6 rad)) whereas the IK

regressor is trained on a large datasets. This is motivated by the

fact that the IK regressor learns the kinematic constraints and

underlying chain correlations whereas the meta-learner extract

from few samples the structure of the task to make regression

faster and comply with the motion-to-photon latencies the VR

rehabilitation task requires. In order to evaluate the upper body

kinematics our meta-learning adapted regressor is compared

against three popular and widely used IK solvers. FABRIK

is an IK solving algorithm which avoids the use of direct

joint rotations [28]. It iteratively finds joint positions via the

location of points on a line. The Cyclic Coordinate Descent

CCD [29] algorithm is similar to FABRIK, but instead of

finding a point on a line, every single joint in the IK chain gets

bent towards the target. Like FABRIK, CCD is an iterative

IK solver which terminates when the last joint in the IK

chain aligns with the target position. The last IK algorithm

we compared against is Limb (Final IK, Unity 3D plug-

in). It employs a trigonometric IK solving which tries to

heuristically keep the joint configuration in a natural and

relaxed configuration. Our overall experimental system uses

VIRTOOAIR: VIrtual Reality TOOlbox for Avatar Intelligent

Reconstruction processing [23].

V. EXPERIMENTS AND EVALUATION

A. Single body-part experiment

For the experiments we use tracking data from the HTC

Vive VR hand-controllers. In this initial experiment we look at

the 10-shot sinewave regression learning task described in [17]

where MAML is trained 500 separate models on 500 tasks.

Each of their models was initialized randomly and trained on

a large amount of data from its assigned task. Similarly, we

feed our unsupervised meta-learner with a sinewave motion

(the hidden relation between the two inputs in the dataset)

of the HTC Vive controller. We remind the reader that we

employ unsupervised learning and the meta-learner has no

prior information about the underlying function in the data

coming from the HTC Vive VR hand-controller, left hand. Our

meta learner is able to extract the underlying relation from just

few samples running 500 epochs (i.e. meta-iterations) training

on 250 separate models (i.e. HTC Vive VR hand-controller

generated sinewave parameters, amplitude and phase), as

shown in Figure 5, lower panel. Our system is able to extract

the data distribution simultaneously for each task, Figure 5 as

shown in the tuning curves depicting neuron preferences for

a certain task (e.g. 120) presented during training. The data

was generated by HTC Vive VR hand-controller, left hand.

In order to use the extracted underlying structure in adapting

the IK regression, we decode the weight matrix encoding the

relation (i.e. structure) using Brent’s method [30].

B. Full-body experiment

For our real-world VR avatar reconstruction scenario, we

examined how our meta-learner can extract avatar kinematics

structure (i.e. rotation of the head angles: roll, pitch) given

sensory data, Figure 6, tracking and inertial data from the HTC

Vive system used in our setup. Now we extend the experiment

by using all HTC Vive VR system data, hand controllers and

HMD. The learned structures, for roll and pitch motions,

resemble actually to the non-linear functions used in typical

modelling approaches (i.e. roll is the arctangent transform

applied to the ratio between inertial components on y and z
axes). Yet they preserve the irregularities in the cross-sensory

relations, as seen in Figure 7. We use the learnt structure from

the meta-learner in order to ”meta-train” on global rotations

(i.e. roll, pitch) for new samples the ResNet-50 of our joint

rotation IK regressor, and evaluated it in terms of Mean Per

Joint Rotation Error (MPJRE), as shown in Table I. In our last

experiment, we evaluate the performance of the meta-learner

to improve our joint position IK regressor performance (Mean

Per Joint Position Error (MPJPE)). Table II shows how our

approach outperforms existing inverse kinematic solutions due
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Fig. 4: Experimental system architecture. The meta-learner extracts the structure from few samples and drives the IK regressor

to the underlying structure, speeding up adaptation.

TABLE I: Evaluating IK algorithms (joint rotation)

Method MPJRE
Limb IK Solver 67.9°
CCD [29] 105.8°
FABRIK [28] 88.4°
Meta-Learner (ours) 13.9◦

to its learnt soft constrains of human motion (i.e. hidden in sen-

sory correlations) learnt by the meta-learner from the manifold

of real-world human poses. The broad range of experiments

in this section were meant to demonstrate the capabilities

of our unsupervised meta-learner to extract the underlying

relations among the sensory data characterizing user’s avatar

TABLE II: Evaluating IK algorithms (joint position)

Method MPJPE
Limb IK Solver 29.5 mm
CCD [29] 54.7 mm
FABRIK [28] 43.7 mm
Meta-Learner (ours) 25.8 mm

motion kinematics in VR. The preliminary results show that

such a meta-learning algorithm has potential to handle highly-

nonlinear tasks supporting fast adaptation when facing with the

inherent variability, such as in CIPN rehabilitation programs.
1.

1Source code available at: https://gitlab.com/akii-microlab/virtooair
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Fig. 5: Meta-learning regression task in 1D: Learning ad-

ditional characteristics of the data, i.e. distribution encoded

through tuning curves width.

Fig. 6: Input data for learning rotation structure from VRT

(VR controllers and HMD tracking) and VRI (VR controllers

and HMD inertial): a) roll data from VRT and VRI vs Ground

truth; b) pitch data from VRT and VRI vs Ground truth

Fig. 7: Meta-learning task for rotation from VRT (VR con-

trollers and HMD tracking) and VRI (VR controllers and

HMD inertial): a) learned roll structure; b) learned pitch

structure

VI. DISCUSSION

In the proposed work we developed a neural network based

meta-learning system for sensorimotor correlations extraction,

as shown in Single body-part and Full-body experiments.

The system is capable of attaining good performance for the

initial tests of such a framework in a simple test-bed similar

to rehabilitation procedures. This was achieved thorough the

integration of the neural learning system, at the core of our

system, with the end-to-end avatar reconstruction framework

for precise full-body motion analysis and kinematics [23].

These contributions will guide the primary goal of motor CIPN

rehabilitation, namely to help the individual return to func-

tional performance of daily life activities through the recovery

or compensation of lost motor skills [31] through personalized

avatar-based rehabilitation. Our scientific rationale for using

VR technology within CIPN rehabilitation is supported by

the field of motor learning [32]. Therapeutic interventions

using VR systems are attractive rehabilitation options because

the motor learning variables underlying experience dependent

neuroplasticity are inherent attributes of VR systems [33].

Moreover, our learning system capable of extracting the under-

lying sensory correlations in the patient’s kinematics in VR can

support personalized CIPN rehabilitation [34]. The proposed

meta-learning system is capable of learning from few samples

the underlying manifold on which the sensory data, describing

patient motions, lies and use this to adapt to novel tasks.

During learning our system doesn’t only adjust the parameters

of the default generative model but learns a new one, through

a structure specific facilitation [9]. Our contribution is a novel

unsupervised meta-learning system that improves end-to-end

VR avatar kinematics tracking [23] in CIPN rehabilitation

scenarios. Here, the latency constraints are high, the variability

of the patients is high and the data is scarce.

VII. CONCLUSIONS

In Chemotherapy-Induced Peripheral Neuropathy(CIPN),

the most common side effects of cancer treatments, the

maintenance of an upright posture is highly dependent on

feedback from the somatosensory and vision systems; there-

fore, sensory losses alone can greatly impair balance and

gait. CIPN motor retraining involves the manipulation of

variables which is where VR therapies prime. Since the

introduction of VR interfaces into the rehabilitation toolkit,

considerable work has been done to validate movements made

in various environments. However, there is still much work

to be done. Our system provides a platform for personalized

motor rehabilitation (i.e. as in CIPN) including an objective

measure of patient motion kinematics to support clinicians to

better detect CIPN symptoms compared to relying solely on

patient-reported measures. Functional measures, such as those

described in our VR avatar experiments (i.e. for hand and

full-body), may aid oncology rehabilitation clinics in reducing

patients long-term motor deficits through learned sensorimotor

correlations for individualized, personalized rehabilitation. The

proposed meta-learning system speeds-up adaptation in the

face of high patient motion variability and latency constraints
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towards a truly personalized experience. Our long-term goal

is to train the meta-learning VR avatar system in the lab

setup and deploy it for personal home-based rehabilitation.

VR devices becoming commodity will allow for continuous

monitoring and personalized rehabilitation. The clinical part

of the team has developed an initial experiment design and

validated several novel metrics to assess motor decline in

breast cancer survivors CIPN. Employing the proposed meta-

learner the study aims at determining and exploiting those

rehabilitation relevant biomechanical variabilities for VR re-

habilitation programs.
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