
Accepted manuscript to appear in JCSC

Accepted Manuscript
Journal of Circuits, Systems, and Computers

Article Title: FPGA-based Hardware Accelerator for an Embedded Factor Graph with
Configurable Optimization

Author(s): Indar Sugiarto, Cristian Axenie, Jorg Conradt

DOI: 10.1142/S0218126619500312

Received: 11 May 2017

Accepted: 22 April 2018

To be cited as: Indar Sugiarto, Cristian Axenie, Jorg Conradt, FPGA-based Hard-
ware Accelerator for an Embedded Factor Graph with Configurable
Optimization, Journal of Circuits, Systems, and Computers, doi:
10.1142/S0218126619500312

Link to final version: https://doi.org/10.1142/S0218126619500312

This is an unedited version of the accepted manuscript scheduled for publication. It has been uploaded
in advance for the benefit of our customers. The manuscript will be copyedited, typeset and proofread
before it is released in the final form. As a result, the published copy may differ from the unedited
version. Readers should obtain the final version from the above link when it is published. The authors
are responsible for the content of this Accepted Article.

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

https://doi.org/10.1142/S0218126619500312

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

Journal of Circuits, Systems, and Computers
c© World Scientific Publishing Company

FPGA-based Hardware Accelerator for an Embedded Factor Graph

with Configurable Optimization

Indar Sugiarto§∗

Department of Electrical Engineering, Petra Christian University, Jl. Siwalankerto 121-131,
Surabaya, 60234, Indonesia

§indi@petra.ac.id

Cristian Axenie‡†

Neuroscientific System Theory, Karlstraße 45, 5. OG.

München, 80333, Germany
‡cristian.axenie@tum.de

Jörg Conradt¶

Neuroscientific System Theory, Karlstraße 45, 5. OG.

München, 80333, Germany
¶conradt@tum.de

Received (Day Month Year)

Revised (Day Month Year)

Accepted (Day Month Year)

A factor graph can be considered a unified model combining a Bayesian network and

a Markov random field. The inference mechanism of a factor graph can be used to
perform reasoning under incompleteness and uncertainty, which is a challenging task in

many intelligent systems and robotics. Unfortunately, a complete inference mechanism

requires intense computations that introduces a long delay for the reasoning process to
complete. Furthermore, in an energy constrained system such as a mobile robot, it is

required to have a very efficient inference process. In this paper, we present an embedded
factor graph inference engine that employs a neural-inspired discretization mechanism.

The engine runs on a system-on-chip and is accelerated by its FPGA. We optimized our

design to balance the trade-off between speed and hardware resource utilization. In our
fully-optimized design, it can accelerate the inference process eight times faster than

the normal execution, which is twice the speed-up gain achieved by a parallelized factor

graph running on a PC. The experiments demonstrate that our design can be extended
into an efficient reconfigurable computing machine.

Keywords: embedded factor graph; FPGA; hardware accelerator; probabilistic reasoning.

∗Also affiliated with the Advanced Processor Technology - School of Computer Science at the

University of Manchester, United Kingdom.
†Also affiliated with the IT R&D Division - HUAWEI Technologies German Research Center,
Germany.

1

Manuscript (pdf) Click here to download Manuscript (pdf) jcsc-manuscript-
rev2.pdf

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

2 I. Sugiarto et al.

1. Introduction

In graph theory, there are basically two forms of models: directed and undirected

graphs. Bayesian networks (BNs) fall into the first category whose the inference

mechanism is considered a powerful tool that can be used for reasoning under un-

certainty in many applications such as robotics. For example, a BN can be composed

to link a set of variables that represent beliefs about sensory readings with other

set of variables that carry control information for the robotic actuators. Another

graphical model, known as the Markov network (or Markov random field, MRF),

falls into the second category. The undirected graph such as MRF is better suited

to express soft constraints between random variables 1, which is found to be very

useful in many domains such as computer vision.

There is an increasing trend to merge/combine directed and undirected graphs

into one unified formalism. This unification offers prospective treatments for appli-

cations, where the intrinsic problem in the application cannot be solved solely by a

directed or an undirected graph. A special case of such a unified model is known as

a factor graph (FG), which represents a function’s factorization of several random

variables 2. Factor graphs also support general trends in the field of computational

intelligence that spans from sequential processing to distributed processing 3.

For inference, a factor graph can use a message-passing algorithm known as

sum-product algorithm or belief propagation (BP). A wide variety of algorithms

developed in machine learning, signal processing, and digital communications can

be derived as specific instances of this algorithm, including Pearl’s belief propaga-

tion algorithm for Bayesian networks 2,4,5. Unfortunately, the BP algorithm may

demand an intense computing platform, which is impractical in many real world

applications. To address this issue, we propose to use dedicated hardware to imple-

ment biologically-inspired solutions and strategies, which can also be extended for

a broader class of probabilistic inference engine.

Many researchers have already proposed methods to improve the performance

of graphical model computations by harnessing parallelism in modern computers
6,7,8,9,10, as well as using graphics processing units (GPUs). Silberstein et al. first

demonstrated the potential of a GPU computation that impacts the performance of

Bayesian networks for statistical fitting tasks using a BP approach 11. Factor graphs

have also already been implemented in a GPU 12,13. However, to our knowledge,

neither implementation nor investigation has yet been conducted on factor graphs

using any dedicated hardware.

In this paper, we propose an embedded factor graph that will fit into a single

system-on-chip (SoC). The SoC is also equipped with an FPGA module that can be

used to provide an acceleration circuitry for the main processors of the SoC. Such an

accelerator is very useful for real-time embeddes systems14. The main contributions

of our work can be summarized as follows.

• We propose a neurally-inspired discrete factor graph useful for real-time

probabilistic reasoning.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

FPGA-based Hardware Accelerator for an Embedded Factor Graph with Configurable Optimization 3

• We implemented the factor graph engine on an SoC. To our knowledge,

no factor graph has been implemented on any dedicated hardware for real

technical applications.

• We evaluate the optimization strategy on the system design and provide

its performance measurement on a real application.

Fig. 1 shows the general overview of how we use the factor graph inference en-

gine running on an SoC that can be used to control a robot. Our work is also driven

by the flexibility requirement such that we can create many prototype networks for

different application scenarios. Under this paradigm, it is more convenient to create

a factor graph application as a user-friendly program, which is written in a stan-

dard C/C++ and is compiled in an operating system environment (e.g., embedded

Linux). The program then calls the factor graph’s library, which is synthesized on

the FPGA part of the SoC to accelerate the computation. With this strategy, users

of our embedded factor graph can concentrate on the modeling aspect to develop

the best model for their specific application.

Fig. 1: The factor graph inference engine uses the FPGA part of the SoC as an

accelerator. A higher level control algorithm that uses a Bayesian network or a

factor graph runs on the microprocessor part of the SoC.

This paper is organized as follows. In Section 2, we provide a general overview

of our factor graph framework and several related works within related domains.

Afterwards, we describe our system’s architecture and optimization strategy in

Section 3. The paradigm introduced in Section 2 provides guidance on the evaluation

of our proposed method that will be explained in detail in Section 4 for a selected

example in the robotic domain. In Section 5, we provide a thorough discussion about

the overall evaluation of our proposed method. Finally, in Section 6, we conclude

our work and provide our vision for future work.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

4 I. Sugiarto et al.

2. Review of Factor Graphs and Related Works

2.1. Brief Overview of Factor Graphs

A factor graph is a bipartite probabilistic graphical model which is composed of

two types of nodes: variable nodes and factor nodes. A factor node can represent

a conditional probability distribution or simply a functional relationship between

variable nodes connected to it.

A factor graph has two important properties: the network’s parameters and

the network’s structure. The parameters of the network depend on how values are

encoded and decoded in the network; whereas the network structure is application

specific (i.e., it can be inferred from the given tasks in the application).

A graphical model such as a Bayesian network can be transformed into a factor

graph by adopting the conditional probability as the internal function of a fac-

tor node. As an illustration, consider a dynamic system that can be expressed in

difference equations:

xk+1 = Axk + Buk

yk = Cxk + Duk
(1)

The value of x is then calculated by summing points from initial/starting point

k = 0 up to some value 0 < k ≤ K, and also by considering the value at x0.

Using the unrolling mechanism, Eq. (1) can be represented as a Bayesian network

resulting in a chain as shown in Fig. 2a.

x0 x1

u0

y1

x2

u1

y2

xK

uK-1

yK

...

...

...

(a)

x0 x1

u0

y1

x2

u1

y2

xK

uK-1

yK

...

...

...

xK-1
bel(x0) bel(x1) bel(xk-1)

meas(y1) meas(y2) meas(yk)

(b)

Fig. 2: (a) A Bayesian network representation for a dynamic system expressed in (1).

(b) The resulting factor graph from the network shown in (a). In this representation,

probabilistic random variables are denoted by circles, whereas the probabilistic

relation between neighboring variables are captured in factor nodes and are denoted

as solid squares.

The Bayesian network shown in Fig. 2a can be transformed into a factor graph by

adding factor nodes per maximal-clique basis in order to avoid loops. The resulting

factor graph is shown in Fig. 2b.

As we can see in Fig.2, basically there are two main probability functions. The

first is the state transition probability, expressed as bel(xk) = p(xk | xk−1, uk),

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

FPGA-based Hardware Accelerator for an Embedded Factor Graph with Configurable Optimization 5

which specifies how the system’s internal and environmental states evolve over

time as a function of control inputs uk. The second is the measurement probability,

expressed as meas(yk) = p(yk | xk), which specifies the probabilistic law according

to which measurement y should be observed when the system is in the state xk. In

robotics, this measurement probability is useful for modelling not only the sensor

measurement, but also for the noise which might present during the measurement.

In this paper, we use this sensor measurement modelling as the example case (see

Section 4.1).

Once we have defined the network structure, the parameters of each factor nodes

must be obtained using a learning mechanism. In our work, we used an expectation

maximization (EM) algorithm for learning. This algorithm uses inference processes

iteratively as follows: each node in the graph generates an output message that will

be updated consecutively after receiving messages from the neighboring nodes. We

observe that this inference process is the most intense computation in a factor graph;

hence, we focus our optimization strategy on this aspect. Section 3.3 describes in

detail how we developed the algorithm and accelerated it in hardware.

2.2. Encoding and Decoding Strategy

Learning the factor graph’s parameters are crucial since it involves the decision of

how to encode messages’ value. Our encoding strategy is based on the positional

coding principle in population coding theory 15. Here, a collection of neurons with

similar characteristics will react in synchrony after stimuli 16. We propose to use

the population coding for the following reasons:

(1) By using a population of neurons with certain activation functions, the entire

space can be represented compactly so that the loss of information due to

quantization can be minimized. Here, we can think of a state in the discrete

variable as a neuron in the population.

(2) The probability distribution produced by the population of neurons can be used

to represent the uncertainty of sensory information. Since the sensor reading

may be influenced by noise in the environment, it is beneficial to read the sensor

data with some level of confidence encapsulated in the probability distribution.

Fig. 3 shows the basic idea of population coding that we use in our factor graph.

Each neuron in that population has a specific characteristic that can be modeled

using tuning curves, shown in Fig. 3b. The combined activation levels of those

neurons resembles the probability density function of the given input stimulus.

In our work, we implement the population coding as follows. Consider the net-

work in Fig. 2b; the smallest subset of the dynamic factor graph is composed of

four nodes, e.g., {xK−1, xK , uK−1, yK} (shown at the right most in Fig. 2b). For

representing the joint probability p(xK−1, xK , uK−1, yK) numerically, we can split

the interval I = [min val, max val] into i subintervals (called states) and then as-

sign a probability value for each state and make sure that
∑
i pi = 1. This way,

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

6 I. Sugiarto et al.

(a)

(b) (c)

Fig. 3: The basic principle of population coding for encoding values in our discrete

factor graph. (a) Conceptually, a population of neurons in a region of the brain

will react in synchrony after the stimulus Sext(t), and produces an intrinsic re-

sponse R(t). (b) Neurons’ characteristic modeled using several tuning curves. (c)

The resulting encoded probability distribution.

each neuron will contribute to the population activity defined as 16:

x(t) =

∫ t+∆t

t

∑
j

∑
f δ(t− t

f
j)dt

∆t·N (2)

The population activity may vary rapidly and can reflect changes in the stimu-

lus conditions nearly instantaneously. However, the activation model given by (2)

is very coarse and leads to the local coding representation that yields similar char-

acteristic to Kronecker delta discretization method. This discretization method is

known to have a staircase effect 17. To have a finer approximation, we propose to

use a Gaussian function for tuning curves in a homogeneous neurons population:

xi =
1

σ
√

2π
e−(s−µ)2/2σ2

(3)

where xi is the ith neuronal activation level of the population, corresponding to the

neuron i in which the relative position of the neuron to the stimulus is represented

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

FPGA-based Hardware Accelerator for an Embedded Factor Graph with Configurable Optimization 7

by µ. Fig. 3b shows an example of the homogeneous tuning curves and illustrates

how a real value input, which is regarded as an incoming stimulus, is encoded in a

population code. The combined activation levels from each neuron then shape the

overall distribution of the corresponding population (see Fig.3c).

To get the real value back from the population code representation, one might

be tempted to use the winner-take-all approach since the winning neuron intuitively

represents the most likely state that contributes the largest portion to the overall

density. Eventhough this idea is a common perspective in the decision theory, it

will not valid for a multi-modal probability density function such as the mixture

Gaussian 18. Furthermore, this approach does not always work especially in the case

where the density function originates from data with a non-uniform distribution.

In our work, we use the maximum likelihood inference (MLI) in which the

stimulus estimator x̂ is obtained by maximizing the log-likelihood p(r | x), where r

is the tuning curves function and x is the stimulus. For practical consideration, it

is convenient to assume that the inter-correlation between the tuning curves can be

neglected. Thus, solving this MLI will be the problem of approaching the stimulus

estimator using the center-of-mass method 15:

x̂ =

∫∞
−∞ x · p(x) dx
∫∞
−∞ p(x) dx

If the message containing the above information is normalized, then the denom-

inator part can be removed. In the discrete form, the stimulus estimator is the

expected value of the probability mass function:

x̂ =
n∑

i

xipi(x) (4)

where xi is the center of the tuning curves and pi is the activation level of the

corresponding neuron. In other words, all neuron responses are integrated by using

the weighted population average. This will yield an approximate inference since the

real value computed using formula (4) will not be exact.

2.3. Related Works

Our discrete factor graph is an instance of a class in machine learning tools known

as the probabilistic graphical model (PGM). Many PGM tools were designed to

suit one of the forms of PGMs, either directed or undirected models 19. Only a

few of them include factor graphs in their libraries. However, many of those factor

graph libraries use a standard discrete factor graph (e.g., using Kronecker delta

discretization strategy) in their implementation, for example, the software package

called libDAI 20, GTSAM 21,22 and BNT 19. libDAI uses belief propagation for its

inference, but GTSAM and BNT use variable elimination algorithms to perform the

inference process. Those libraries implement factor graphs on standard computers

(PCs) and only suitable for simulation purposes; hence, they cannot be used for

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

8 I. Sugiarto et al.

practical purposes such as for real-time robot control. Furthermore, none of them

implements population coding for encoding message values to run through a factor

graph network.

Regarding the discretization strategy, the work by Mansinghka 23 has some

similarities to ours. He created a stochastic digital circuit for Markov chain Monte

Carlo (MCMC) sampling using FPGA. The main difference between Mansinghka’s

work and ours is that we implement the discretization for continuous variables using

the population coding technique; whereas Manshinghka concentrates on the sam-

pling algorithm from statistics. Nevertheless, both approaches work in the discrete

domain because working with the propagation of continuous variable distributions

may result in multidimensional integration which leads to intractable operations,

especially for embedded systems with limited resources 24.

We are also aware that some researchers have already used factor graphs in a

distributed computing framework to exploit Bayesian networks. For example, the

work by Zhao 25 uses libDAI to implement discrete factor graphs and speed up the

computation by using a parallelism framework called MapReduce 26. Unfortunately,

we could not test their method on a discrete factor graph using population coding

because libDAI does not support population coding techniques.

Regarding the inference procedure, work by Andreas Steimer 27 also has some

similarities to ours. However, he was focused on different levels of abstraction for

implementing BP in neural substrates. His method was implemented using Liquid-

State Machines (LSMs), and he applied it to Forney-style factor graphs. Our ap-

proach, on the other hand, uses BP on ordinary, but arbitrary, factor graphs with

tuning-curve-based population coding. Furthermore, Steimer developed an abstract

idea of hardware implementation called Interspike-Intervals-based processor; while

we implemented our factor graph in real SoC hardware.

In this paper, we use a sensor fusion task as an example case. There are some

efforts to incorporate the sensor fusion task into a factor graph 28,29,30. However,

their methods rely on the variable elimination mechanism for factor graphs. Our

method, in contrast, uses a native- and hardware-based message passing method

for the belief propagation.

Finally, regarding the numerical and arithmetic implementation, we used the

native single-precision floating point offered by the SoC vendor. However, our ex-

perience with floating-point arithmetic provided by the vendor for implementing

our proposed method showed that the operation involving floating-point literals

might not be optimized during synthesis. Thus, we had to inspect carefully the

synthesis report produced by the FPGA synthesizer and looked for the mismatches

and artefacts. This idea was inspired by the work of Tomasz Czajkowski on the

optimization approach that uses functionally linear decomposition technique and

dynamic power reduction 31.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

FPGA-based Hardware Accelerator for an Embedded Factor Graph with Configurable Optimization 9

3. System Architecture and Optimization Strategy

A system-on-chip is an integrated circuit (IC) that integrates all components of a

microprocessor or other electronic systems into a single chip. SoCs offer extensive

system level integration and flexibility, but they also impose a new challenge of inte-

grating both concurrent and sequential programming paradigm. In the subsequent

subsections, we describe how our embedded factor graph framework was developed.

3.1. Selected SoC Platform

In our work, we use a tailored module TE0720 produced by Trenz-Electronics (see

Fig. 4). It is equipped with 8 Gbit DDR3 SDRAM and 32 Mbyte flash memories

for configuration and operation.

(a) (b)

Fig. 4: The module TE0720 (GigaZee) shown in (a) physical appearance, and (b)

block diagram. It has a Xilinx Z-7020 and several additional components such as a

gigabit Ethernet transceiver (physical layer), 8 Gbit (1 Gbyte) DDR3 SDRAM and

32 Mbyte SPI Flash. (Source: www.trenz-electronic.de)

The TE0720 module is equipped with an SoC XC7Z020 from Xilinx Zynq-7000

family. This SoC is composed of two tightly coupled sub-systems: PS (processing

system, i.e. the microprocessor core) and PL (programmable logic, i.e. the FPGA

component). The PS sub-system consists of equivalently two ARM Cortex-9 pro-

cessors, and the PL sub-system is equivalent with an FPGA Artix-7 from Xilinx.

Table 1 summarizes the most important features of Xilinx Z-7020 that are relevant

to the evaluation of our proposed design.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

10 I. Sugiarto et al.

Table 1: Important features of Xilinx Z-7020.

Processor Dual ARM Cortex-A9

Logic Cells (LC) 85K Logic Cells

BlockRAM (BRAM) 560 KB

DSP Slices 220

3.2. FPGA-Accelerated Factor Graph Engine

Running an intense computation on hardware can improve the overall performance

of the system. We also agree that the most effective way to increase the efficiency

is by exploiting application’s characteristics in hardware 32. In our work, we imple-

mented this idea such that the main application will run on the PS component of

the SoC, whereas the factor graph inference engine runs on the PL . The applica-

tion will invoke some factor graph functionalities (as described in 33), and the factor

graph library manages all the nodes and the scheduler used for the message-passing.

In addition, the PS component of the SoC will be responsible for communication

with external devices such as the host PC (to support further data analysis) and/or

the robot (which will be controlled by the factor graph).

During the inference process, the PS will send message values to the PL. In the

PL, messages will be processed with the sum-product algorithm. This algorithm,

which performs many for-loop-based computations, are implemented in a parallel

fashion by pipelines and by unrolling a block of the code. Once the computations

have been completed, the results will be sent back to the PS and will be delivered

to the external devices or propagated to different nodes within the respective fac-

tor graph. Fig. 5 shows the block design of our embedded factor graph with an

accelerator.

To communicate factor graph messages between the PS and the PL components,

the AXI protocol was used. The factor graph messages from the PS were sent to

the PL (and vice versa) in a form of an array. To facilitate computations with

the array, internal memory units (either distributed block RAMs (BRAMS) or

looked-up tables (LUTs)) must be included in the design. In most parts of our

implementation, BRAMs were used instead of LUTs because of the high cost of

LUTs usage (although BRAMs are a bit slower than LUTs).

The accelerator module (labeled as SumProductAcc shown in Fig. 5) facili-

tates the interrupt mechanism; when the factor product or the marginalization is

completed, the PL will send an interrupt signal which will be intercepted by the

accelerator module driver in the Linux running on the PS. The Linux kernel then

notifies the factor graph program that the sum-product acceleration has been com-

pleted and the factor graph’s message can be fetched from the PL. Fig. 5 also shows

that the SumProductAcc module has a special type of input called factor PORTA

that facilitates a direct access to the ROM that contains the internal function of

a factor node. This internal factor’s function must be supplied at the beginning of

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

FPGA-based Hardware Accelerator for an Embedded Factor Graph with Configurable Optimization 11

Fig. 5: Block design of the factor graph engine in a SoC with FPGA as the accel-

erator. All modules in the upper region are implemented in the FPGA while the

lower region represents the ARM processor of the Zynq-7000. The modules within

the red block are the main elements of the accelerator while the modules within

the green block are supporting elements that connect the accelerator to the ARM

processor.

the program execution during the loading of the device driver that was generated

by the synthesizer. The number of the functions may vary (depending on the factor

graph network being instantiated in the PS) and can be determined by the memory

address that has been allocated for the SumProductAcc module. The size of each

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

12 I. Sugiarto et al.

factor’s function depends on the number of scope variables and the cardinality of

each variable. In this paper, this cardinality is referred to as the number of states

in the population coding.

3.3. Optimization Strategy

Regarding the area optimization with respect to the storage/memory allocation

in internal resources of the FPGA, the main trade-off usually lies on the choice

between using the basic logic gates (LUTs) or BRAMs. Although it is possible to

use external memory, we prefer to avoid this method since external memory access is

an expensive task in terms of FPGA resources. Controlling external memory needs

explicit routing strategies in order to match the interfacing protocols and timing

constraints required by the memory hardware 34. In our work, we strive to optimize

our design by only instantiating memory elements either on LUTs or BRAMs.

Table 1 shows that Z-7020 has limited BRAMs and it should only be used when

the latency is not the main issue since the distribution of BRAM units within the

chip is sparse. In contrast, the LUTs will provide the fastest response (i.e. lower

latency), since LUT-based memory can be allocated right next to the computing

cores. However, LUTs are the elemental logic units necessary for implementing the

core elements of a factor graph. Many parts in our algorithm require accesses to

memory units in a form of an array. The Array is a basic construct to express

a memory access in Xilinx Vivado-HLS. The optimization strategy for arrays in-

cludes reshaping and partitioning. By optimizing the array (either reshaping or

partitioning), the data transmission bottleneck can be avoided. Fortunately, Xilinx

Vivado-HLS provides a convenient way to handle this array optimization that helps

us to inspect and analyse the resource usage/consumption for later optimization.

Regarding the speed optimization, our approach is mainly based on the idea of

exploiting the “unbounded” parallelism paradigm in the sense that we can paral-

lelize any task, in any degree, in a resourceful FPGA. In our work, we used two

important optimization scenarios: unrolling and pipeline. The unrolling mechanism

provides intrinsic/näıve task parallelisms for achieving high-speed performance;

whereas pipelining mechanism provides behaviouristic parallelism by breaking down

a sequential process into sub-operations, and then pushed them into a series of in-

dependent processes as hardware blocks. We give an example of how to use these

unrolling and pipelining in our algorithm-1.

Using these scenarios, there was a trade-off during each loop’s iteration on which

we had to make a balance between the hardware state and the hardware resources.

We used two metrics to measure the efficiency of our optimization approach: clock

latency (which indicates the success of our speed-based optimization) and resource

consumption (which measures how well our area-based optimization has been car-

ried on by the synthesizer).

In addition to these two optimization scenarios, there was another important

aspect that needed to be considered. When implementing our factor graph frame-

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

FPGA-based Hardware Accelerator for an Embedded Factor Graph with Configurable Optimization 13

work in a PC, we used double-precision floating point values so that we could get

the best or the smoothest result for the inference using belief propagation. Unfor-

tunately, this double-precision was very expensive in terms of hardware resource

usage in the FPGA. Hence, we used single-precision floating point values. Although

basically we can use any number of bits, the Xilinx synthesizer restricts the use of

such an approach and only optimizes a design that uses 32-bit representation. As a

result, we could not perform any further optimization in this floating point aspect.

As an alternative to floating point, we could also use the fixed point format,

which is faster than floating point for some operations. However, we found that

the fixed point arithmetic produced coarse results, which will be less useful in real

robotics applications. Moreover, its dynamic range is also limited. For example, it

is very difficult to get a large real value number (higher than 100.0) and a very

low probability value (less than 0.000001) at the same code using the fixed point

arithmetic. Hence, we argue that floating point is the best choice for our factor

graph implementation in the SoC, even though it consumes many its FPGA logic

resources. Furthermore, we can see the trend of SoCs (and FPGAs) becoming denser

and relatively cheaper; hence, this issue will not become a problem in the future.

All of the main core modules of our factor graph engine were developed using

Vivado-HLS. Only a small subset of logic elements, which are small but frequently

used, were written purely in VHDL in order to reduce total latency and to achieve

higher area optimization. Beside this Vivado-HLS, Vivado Suite from Xilinx also

has an SDK (Software Development Kit) framework which is very useful to create

an embedded application. We used Vivado SDK for developing our factor graph-

based controller which runs under embedded Linux system. The diagram in Fig. 6

shows the workflow of our SoC-based embedded factor graph design.

Fig. 6: The overall design flow for creating embedded system applications based on

SoC. This includes several development tools with different customizations.

In our work, we used Petalinux as our embedded Linux platform and made the

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

14 I. Sugiarto et al.

system to run in kernel space; hence, the driver will be loaded automatically when

the Petalinux starts. This will be a preferable choice for most future users of our

factor graph module due to its simplicity and flexible instantiation. Furthermore,

this will facilitate various experiments regarding the learning process of the instan-

tiated factor graph module. For example, the EM algorithm for our factor graph

requires unique scheduling mechanism that will be easily accommodated by using

system-wide timing mechanism for the updating process.

Regarding the belief propagation setting for EM, the network will propagate

messages iteratively during which the network’s parameters are regularly updated.

Iteration in EM consists of two steps: the expectation update for the log-likelihood

given the old parameters and the observed data, and the maximization procedure

to update the parameters. Normally, the expectation update of the log-likelihood

is computed as follows:

E[log p(X)|Y, θ] =
∑

x

p(X|Y, θ) log p(X|θ) = E[log
∏

i

(
1

Z

∏

a

f(Xi))|Y, θ] (5)

Here f denotes an internal function of a factor node in a factor graph and

Xi = x indicates a specific variable configuration (i.e. state) for this function.

Hence, f(Xi = x) corresponds to a single parameter of that function.

In our work, we used a modified version of an EM algorithm. It is inefficient to

calculate f(Xi = x) by enumerating all configurations of the arguments. Rather, we

need to find a configuration with the maximum probability value and then spread

the distribution according to the population code’s variance. Since the EM algo-

rithm is an iterative approach and we used population coding instead of Kronecker

delta function, we used Kullback-Leibler (KL) formula to measure the divergence

level of the newly learned parameters. This KL divergence has the following basic

form:

DKL(p ‖ q) =
∑

x

p(x) ln
p(x)

q(x)
=

∑

x

p(x) ln p(x)−
∑

x

p(x) ln q(x) (6)

By using Jensen’s inequality theorem, we know that DKL(p ‖ q) ≥ 0 with

equality iff p = q. We applied the KL measure on the difference between the new

probability distribution (p(x)) and the old probability distribution (q(x)) about

some threshold value as the stopping criteria. The iteration was stopped when this

KL measure was fulfilled or when the MAX ITERATION value was reached. The

algorithm for learning the parameters using this EM approach is shown below.

As we can see in algorithm-1, there are two loops in which we can apply the

unrolling and pipelining. The outer loop (started at line-2 and terminated at line-

16), the algorithm will be fed with certain data points in which the parameter Θ

will be accumulated. Normally, this is a sequential process, since the resulting Θ

will be used for comparison using (6). However, we can break down this process into

sub-tasks and then pipeline them. This is possible because fetching data and storing

the result are independent of the computation itself. This pipelining mechanism is

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

FPGA-based Hardware Accelerator for an Embedded Factor Graph with Configurable Optimization 15

Algorithm 1: Estimate factor parameter θ using EM

1 Θ← uniformly distribute;

2 forall sample in X do

3 [oRead] φ, φold, φnew ← uniformly distribute;

4 [oComp] for i = 0 to MAX ITERATION do

5 for j = 0 to k do

6 [iRead] get sample data;

7 [iComp] compute product(φknew);

8 [iWrite] φ←∑
φknew;

9 end

10 compute diff = KL(phiold, phi);

11 if diff ≤ THRESHOLD then

12 φold ←
∑
φ

13 end

14 end

15 [oWrite] Θ← φold
16 end

17 normalize Θ;

18 return Θ;

shown in Fig.7a. We denote this outer loop tasks as oRead, oComp, and oWrite

respectively.

The inner loop (started at line-5 and terminated at line-8) within an intermedi-

ate loop (started at line-4 and terminated at line-14) is responsible for computing

the factor product. This is a completely independent computation due to indepen-

dence between neurons in the population coding; hence, we apply unrolling on this

section. The number of parallel hardware instantiations depends on the cardinality

of the factor graph. This unrolling mechanism is shown in Fig. 7b. We denote the

computing blocks inside this inner loop as iRead, iComp, and iWrite respectively.

In our work, we used Xilinx Vivado HLS (High-Level Synthesis) to create mod-

ules using C++ syntax. For example, we created a module SumProductAcc (shown

in Fig. 5) that provides the acceleration for the sum-product computation. Using

Vivado HLS, the unrolling and pipelining mechanisms can be conveniently im-

plemented. Fig. 8 shows how the product operation in line-7 of algorithm-1 was

implemented.

Shown on Fig. 8, the #pragma directive with HLS PIPELINE command is in-

serted at the beginning of the inner loop, which instructs the synthesizer to pipeline

the loop with minimum Initiation Interval. On the other hand, the #pragma di-

rective with HLS unroll command is inserted at the beginning of outer loop

for unrolling the outer loop. Loop unrolling creates more operations in each loop

iteration to achieve higher throughput and system performance.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

16 I. Sugiarto et al.

(a) (b)

Fig. 7: Unrolling and pipelining mechanism for the algorithm-1, exhibiting: (a)

pipelining outer part, and (b) unrolling inner part. We used 3-stage pipeline (p1 to

p3) since we only had three separable processes, and we used 10 to 20 instantiations

(due to current hardware limitation) for the unrolling.

#define MAX_VAR 4
#define UROL_FACTOR 4

extern int nodeIdx;
extern float msgIn[];
extern float msgOut[];
extern float factor[];

void fproduct(int cardinality, int nScope)
{
 int N = cardinality * nScope;
 int ScopeDim[MAX_VAR] = {cardinality};
 int checkInScope;
 for(int j=0; j<cardinality; j++)
 {
#pragma HLS unroll factor=UROL_FACTOR
 for(int i=0; i<N; i++)
 {
#pragma HLS PIPELINE
 int stride[MAX_VAR] = {1};
 for(int k=0; k<nScope; k++)
 {
 stride[k] = cardinality * stride[k-1];
 }
 checkInScope = k/stride[i] % ScopeDim[nodeIdx];
 if(checkInScope)
 {
 msgOut[j] = msgIn[j] * factor[i];
 }
 }
 }
}

Fig. 8: A snippet of a code that shows how unrolling and pipelining are used to

implement a factor product used in algorithm-1.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

FPGA-based Hardware Accelerator for an Embedded Factor Graph with Configurable Optimization 17

4. Experiments and Evaluation

In this section, we evaluate the performance of our proposed implementation of a

discrete factor graph inference engine, and use a test case in a robotic domain. To

keep this paper concise, we use only the sensor fusion part from our whole robot

model to give an intuitive example of how elegant a factor graph can be used to

deal with uncertainty in the real world.

4.1. Example Case: Sensor Fusion for Robot Navigation

The robot is equipped with several sensors; two of them are a gyroscope and a com-

pass. Here, we want to use those sensors to give information about the orientation

of the robot (i.e., the heading of the robot). The use of both gyroscope and compass

is important, particularly when the robot works in an outdoor environment where

there is no overhead sensor that gives information about absolute robot’s pose. The

experimental data for this example case is based on our previous work that used

our robot shown in Fig. 9a. Readers are referred to 35 for the detailed information

about the data collection and its pre-processing.

The factor graph models of the sensor fusion network are shown in Fig. 9b and

Fig. 9c. The goal of this sensor fusion is to combine measurements from a set of

different sensors to improve the quality of the perception about the state of the

world.

In our experiment, the robot was placed in a room with an overhead camera

tracking system that gave the “ground-truth” data, which was also useful for cali-

brating the robot’s sensors. Fig. 10a shows how the data was collected and Fig. 10b

shows the corresponding sensor data when the robot was driven to follow a certain

pattern (shown in Fig. 10a).

Further analysis of the data reveals important information regarding the sensors’

characteristic during robot movement. Since the overhead camera tracker provides

the absolute robot’s pose with high resolution, we regarded this information from

robot tracker as the “ground-truth”. Fig. 10c and Fig. 10d show the correlation

between the gyroscope and the camera tracker, as well as between the compass and

the camera tracker. As can be seen from those figures, both sensors produce noisy

measurements and distorted linearity. Using the gyroscope alone or the compass

alone in an outdoor environment will put the robot in a higher risk of instability.

By fusing the information from those unreliable sensors, the robot is expected to

infer its correct pose.

Our sensor fusion network works as follows. The gyroscope data is denoted as

sensor-G, the compass data as sensor-C and the direct/absolute measurement from

the camera tracker as sensor-T. The factor graph network corresponding for fusing

these three sensors is shown in Fig. 9b. For the training of the model, we used the

data collected in 35. During the training phase, the factor graph learned the joint

probability distribution as the internal function of its factor nodes using the EM

algorithm shown in Algorithm-1.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

18 I. Sugiarto et al.

(a)

G C

T

fG fC

fT

fGCT

̀T

̀C̀G

(b)

G C

T

fG fC

fGCT

̀T

̀C̀G

(c)

Fig. 9: (a) Our mobile manipulator, which is equipped with several sensors. (b) The

factor graph network for the sensor fusion task. (c) The network during inference

phase. The evidence enters the network through factors fG and fC , and propagate

until reaching the output node T.

Once the training phase was completed, the model was used for reasoning by

simply unclamping the target variable. The inference procedure estimated the cor-

rect belief about the sensory reading by fusing the data from the available and

connected sensors. To put it differently, this is basically a reversal process to esti-

mate the “ground-truth”. In this case, we removed the input factor node for the

variable-T and let the messages from variable-G and variable-C flowed through the

network. As a result, the network inferred the expected robot’s pose. This inference

process is depicted in Fig. 9c.

The final output from the inference process was obtained by marginalizing the

messages running towards node-T. To evaluate our model, we generated a test set

containing two sensor values (sensor-G and sensor-C) with a distorted sinusoidal

shape. The distortions were introduced by generating Mackey-glass chaotic data

and were added to the sensor values. In order to simulate the real sensor charac-

teristics, both simulated sensor data were adjusted with a correlation factor of 0.9.

Those simulated sensor data were fed to the fusion network which produced the

result shown in Fig. 11. It shows that the estimated robot’s orientation has some

degree of confidence level (depicted as the variance along the estimated result). As

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

FPGA-based Hardware Accelerator for an Embedded Factor Graph with Configurable Optimization 19

(a) (b)

(c) (d)

Fig. 10: The robot experiment to collect data for the sensor fusion network. (a)

The robot followed certain trajectory during which the sensory data were collected.

(b) Collected data that corresponds to the robot trajectory in (a). (c)-(d) Using

the absolute values from the camera-tracking system as the “ground-truth”, data

from gyroscope and compass are evaluated. It can be seen that the robot has an

unreliable sensory reading that introduces distorted linearity.

a comparison, another inference using a standard Kalman filter for sensor fusion

was also performed. As we can see in Fig. 11, our sensor fusion network produced

a smoother trajectory than the standard Kalman filter at some regions. We ar-

gue that this smoother feature is a result of a better generalization on data with

bigger fluctuation disparity, whereas Kalman filter performance is very close to an

averaging technique.

In this example, we demonstrate that our factor graph network can produce

a smooth estimation of robot’s orientation given noisy sensor readings. By fusing

the information from two unreliable sensors, the robot will be provided with more

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

20 I. Sugiarto et al.

Fig. 11: Sensor fusion results. Using pseudo-random data as sensor values, the

network is tested for its capability to reason under uncertainty. The network tries

to estimate the underlying “ground-truth” of the robot’s orientation from the given

sensor reading.

reliable information about its state and its environment. With this excellent result,

we believe that it can be extended into a more complex task that includes more

sensor modalities. We argue that this is an elegant approach because the network

can be easily and intuitively extended without sophisticated additional nodes in

the structure. This is also favorable for low-level hardware implementation of belief

propagation in our approach. For example, we can add one more measurement for

the robot heading from the odometry sensor of the robot, e.g., from the robot wheel

encoder (see Fig. 9a). The network will now have four variable nodes, as shown in

Fig. 12.

4.2. Performance Evaluation

We measured the efficiency of our method using the standard metric commonly

used in FPGA-based designs; i.e. the clock latency for measuring the speed opti-

mization result and the resource consumption in percentage for measuring the area

optimization result. It has been described in Section 3 that the optimization on one

aspect (e.g. the area optimization) will affect the other aspect due to tightly cou-

pled resource constraint of the FPGA. In this paper, we are interested in exploring

the balance of these aspects in order to find the best solution for our factor graph

modules.

For evaluation purpose, we use the networks shown in Fig. 9b and Fig. 12. All

of the variable nodes in the networks are observed; each node will have its own

corresponding factor input (e.g., G will be connected to fG, C will be connected

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

FPGA-based Hardware Accelerator for an Embedded Factor Graph with Configurable Optimization 21

O C

T

fO fC

fT

T

CO

G

fG

G

Fig. 12: The new sensor fusion network. The new measurement unit is added as a

variable node, whereas the factor node in the center now contains the joint proba-

bility distribution of all four nodes.

to fC , etc.) As we have explained in Section 3, we used unrolling and pipeline

techniques for optimizing our design. Application of the unrolling and pipeline

mechanisms requires the loop to be perfect or semi-perfect. A perfect loop means

that the loop bound is constant, whereas a semi-perfect loop might have a variable

bound and needs to apply an exit check protocol. In both circumstances, we need

to specify the cardinality of the variables in the source code before synthesizing it.

Table 2 to Table 5 provides comparisons of our framework implementation scheme

with and without optimization.

Table 2: Clock latency comparison between the optimized and unoptimized design

of the network with three variables (shown in Fig. 9b).

Unoptimized Optimized

States min max min max

10 688 76129 675 34400

20 2574 284244 2530 120978

Table 3: Clock latency comparison between the optimized and unoptimized design

of the network with four variables (shown in Fig. 12).

Unoptimized Optimized

States min max min max

10 9462 442182 9279 160052

20 37848 1768728 36984 628728

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

22 I. Sugiarto et al.

Table 4: FPGA resources consumption (in %) in the optimized and unoptimized

design of the network with three variables (shown in Fig. 9b).

Unoptimized Optimized

States BRAM FF LUT BRAM FF LUT

10 16 4 11 16 8 20

20 32 7 24 32 14 42

Table 5: FPGA resources consumption (in %) in the optimized and unoptimized

design of the network with four variables (shown in Fig. 12).

Unoptimized Optimized

States BRAM FF LUT BRAM FF LUT

10 48 9 27 48 19 51

20 96 17 52 96 39 83

In Table 2 and Table 3, the values in the min and max columns reflect the

minimum and maximum clock latencies that are required to move from one state to

the next state in the FSM (finite state machine) implementation of the algorithm.

From these values, we can estimate how long it will take for the algorithm to

run. These values are only estimations based on the given clock frequency in the

synthesizer program (Vivado-HSL) and not the real clock frequency of the hardware.

For example, in our design we usually specify the clock frequency to be 100 MHz; the

value of 688 means that it takes 6.88 µs to complete the execution. In real hardware

implementation using SoC Zyng-7000, where the FPGA’s frequency clock can be set

up to 628 MHz using an external clock source, the latency value of 688 is estimated

to be completed in 1.1 µs. Likewise, for a maximum latency value of 1768728, it

will take roughly 17.687 ms with 100 MHz clock systems.

In Table 2 and Table 3, we can see that the minimum values do not differ much

for both the optimized and the unoptimized designs, revealing the fact that there are

some parts of the code that cannot be further optimized. Usually, these values are

related to the inter-block data exchange in the code. The maximum values, on the

other hand, show a notable difference between the optimized and the unoptimized

designs. Dividing the maximum value obtained from the unoptimized design by the

value from the optimized design showed an average speed-up ratio of 2.53. We also

observe that the clock latency is heavily affected by the number of states used to

encode a factor graph’s message, which increases exponentially.

Table 4 and Table 5 show the optimization efficiency of the design with respect to

the number of FPGA resources consumed by the design. BRAMs are the distributed

memory units mainly used for instantiating arrays in our design. The FFs (flip-flops)

and LUTs are the main constituents of the configurable logic block in the FPGA

for implementing the arithmetic and logic operations.

Table 4 shows how much resources were utilized for the network shown in Fig. 9b.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

FPGA-based Hardware Accelerator for an Embedded Factor Graph with Configurable Optimization 23

With only three variables connected to a factor node, we could optimize the design

for up to two independent networks, either using 10 or 20 states for the variable’s

cardinality. Fig. 13 shows the internal routing and mapping of FPGA resources for

the fully optimized design used by the network in Fig 9b. As can be seen in Fig. 13a

or Fig. 13b, there are still some free spaces for the network to use a higher number

of states. In our experiment, the network with 50 states was still synthesizable in an

unoptimized version with the maximum latency of about 214056 clock cycles (which

corresponds to the predicted execution time of about 0.32 ms in real hardware).

The resource consumption is also increased up to 65% for LUTs and 28% for the

FFs.

(a) (b)

Fig. 13: Inside the chip: the factor graph accelerator program will be translated and

mapped into FPGA resources (BRAM, DSP, FF, and LUT) and scattered all over

the chip to match the routing policy of the synthesizer. In (a), the floorplan was

produced for the fully-optimized design with 15 states, while in (b) it was produced

by using 20 states.

Table 5 reveals the fact that the network shown in Fig. 12 requires more re-

sources than the network shown in Fig. 9b. It can be seen in the table that if the

unrolling and pipeline mechanisms are not used, two independent networks with 10

states for each variable can be created. However, if the optimization mechanisms are

implemented, only one network with 20 states can be created. In the full optimized

design, almost all of the resources are consumed by the network shown in Fig. 12.

For the evaluation of the run-time execution, we performed a complete inference

test using the network shown in Fig. 9b and using the dataset from 35. The inference

task, in this case, was computing the marginal probability of variable T given input

data for variable G, and C. For this test case, we created the network and ran the

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

24 I. Sugiarto et al.

belief propagation on it using only one processor of the SoC. We fed the dataset to

the network, collected the inference result and sent it to the host PC for evaluation.

Next, we modified the program to use the accelerator, re-created the network and

re-ran the belief propagation using the same dataset as before. The resulting data

from the inference was also sent to the host PC.

The combined result of these two runs is shown in Fig. 14. As expected, the

accelerator can speed up the factor graph computation with a ratio almost reach-

ing 8-times higher than the normal run when the variable’s cardinality is 25. This

demonstrates that the optimization strategy in our module was implemented suc-

cessfully. Unfortunately, we could not test the four-variable network shown in Fig. 12

with greater than 20 states using our current hardware, but we argue that our ac-

celerator can be extended further, given a denser FPGA part of the SoC (e.g., the

moderate SoC chip in the Zyng-7000 family, that is the Z-7035, has a capacity as

much as four times of our Z-7020). This is a contrast with the factor graph without

an accelerator, which runs only on the microprocessor of the SoC. Without the

accelerator, we can use any number of variable’s cardinality, but at the cost of slow

performance.

Fig. 14: Comparison of inference execution performance between accelerated mode

and non-accelerated mode by FPGA in the SoC.

To emphasize the excellence of our method, we tested our design against different

parallelism approaches running on a standard computer (PC). In particular, we are

interested in implementing our population-coding-based factor graph in a multi-

core PC as well as using a GPU (graphics processing unit). The current trend in

such parallelism platforms enables us to quickly implement our algorithm and gain

benefit of parallelism such that we can get the faster result for analysis. However,

parallelizing our factor graph framework in a PC-based machine is not our goal.

For example, we did not utilize the full multigrid threading of the GPU card to

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

FPGA-based Hardware Accelerator for an Embedded Factor Graph with Configurable Optimization 25

implement our factor graph node-by-node. Instead, we just used the GPU as an

accelerator for some of the most intensive computations in the belief propagation

algorithm.

Table 6 and Fig. 15 show the comparison of our factor graphs running on dif-

ferent platforms. We can see that our SoC-based factor graph engine outperforms

the standard parallelism approaches running on PCs in terms of speed-up gain per

watt (our SoC board runs on power less than 5 Watt, whereas our PC needs at

least a 650 Watt power supply). On a PC, the factor graphs were implemented

using three different parallelism strategies: Matlab’s Parallel Toolbox, OpenMP,

and GPU-CUDA. The PC has Intel-i5 running at 3.30 GHz with 16GB SDRAM-

DDR3 running at 1.3 GHz. It was also equipped with a graphic card GeForce

GTX-650 with 384 CUDA-cores and 1 GB DDR5 running at 1 GHz. As we can

see from the table and the figure, the SoC implementation outperforms the other

implementations but with one inevitable disadvantage: using our current SoC hard-

ware (XC7Z020), it cannot run with a very high number of states. We can achieve

50 states in a partial optimization configuration by using only unrolling without

pipelining, and when we use both unrolling and pipeline mechanisms, we can only

achieve 25 states (see Fig. 13b). However, the speed-up gain of the fully-optimized

design far exceeded the other parallelism strategies.

One important aspect that we observed when using these PC-based parallelism

platforms was about the data preparation. We found that the speed-up gain was

heavily influenced by the way the data were prepared apart from the algorithm

itself. We believe that this is because the underlying parallelism method has its own

mechanisms for handling potential software bugs introduced by the concurrency

process, and we have to follow its rules. Problems such as race condition and mutual

exclusion in the OpenMP scenario need to be handled properly in order to make

sure that the results are consistent with the standard/normal way of running the

algorithm on a PC. Also, communication and synchronization between the different

threads are the most difficult tasks to handle in the first place to get the best

performance of the program running in parallel. These issues contribute to the

phenomenon related to the maximum possible speed-up of a single parallelized

program known as the Amdahl’s law. Furthermore, for the GPU-CUDA version,

the overhead of transferring small data from the host to the device hinders the

powerfulness of a Single instruction, multiple data (SIMD) capability of such a

multi-core graphic card.

5. Discussion

The experimental result and its evaluation in Section 4 showed that our accelerator

module worked impressively and can arguably be extended into a more powerful

module in a denser chip. Currently, our hardware cannot handle a large network

with high variable’s cardinality, but the acceleration result does not scale down

with the size of the network’s parameters.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

26 I. Sugiarto et al.

Table 6: Comparison of the full inference time (in second) during the training phase

of the network shown in Fig. 9b on different platforms.

N-States Std-PC Matlab OpenMP GPU Std-SoC Acc-SoC

5 4.946 5.339 4.633 5.573 20.770 3.100

10 8.155 5.923 5.856 5.906 54.020 7.400

15 13.445 5.991 6.042 6.004 101.250 12.500

20 22.167 7.055 6.518 6.921 152.150 17.900

25 36.547 11.654 7.833 10.699 232.960 25.600

Fig. 15: The performance comparison of our factor graphs for the network shown in

Fig. 9b. The PC-version of our factor graphs were implemented using three different

platforms: Matlabs Parallel Toolbox, OpenMP, and GPU-CUDA. We consider our

method of implementing factor graphs on an SoC as a true fine-grained parallelism

since it can optimally make use of the abundance FPGA resources.

The experiment showed that the accelerator running on a single SoC module

can produce optimal results for networks with a factor node having three scope vari-

ables. Adding more connected variables to the corresponding factor node requires

the module to be slightly modified because we have to allocate more memory space

in the LUTs instead of the BRAMs. Also, our current implementation of the ac-

celerator still needs bridging access via the microprocessor to the external RAM

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

FPGA-based Hardware Accelerator for an Embedded Factor Graph with Configurable Optimization 27

where the factor parameters are stored. This configuration slows down the perfor-

mance. Another solution might be the use of a direct memory access (DMA) to the

external memory. This is an interesting idea that needs to be explored further in

our future work. However, the DMA access from the PL component requires the

use of a special intellectual property (IP) core for handling this mechanism. To our

knowledge, the IP core for using DMA via AXI bus will consume a considerable

amount of FPGA resources (up to 10%) which is impractical for our current hard-

ware. Considering this trade-off, we decided to rule out this idea in our current

implementation.

Deploying programs in an embedded system, especially the ones with intrin-

sic parallelism, requires different treatments and explicit considerations. The ex-

perimental result and our analysis in the previous section reveal that our pro-

posed framework exemplifies the important aspects of hardware-software co-design

paradigm, which are: flexibility and platform-friendliness. Our framework proves

to be flexible enough and reconfigurable for robotic applications such as a sen-

sor fusion without too many modifications to the framework. Its flexibility is also

demonstrated by its simple transitional step from a standard graphical model-based

application to our embedded factor graph.

Readers might observe that our method does not produce a ready-to-go design

with which a non-hardware developer can use without touching too much the design

entry in the hardware domain. This is a common circumstance in SoC- and FPGA-

based systems which always require resynthesizing and, eventually, regenerating

the bitstream of the design. It does not mean that once we have generated the

bitstream, the hardware-side development is done. We still need to make sure that

the application programmer can use our hardware. Indeed, the bitstream generation

triggers the next step in embedded system design: developing the driver which is

accessible through a simple API (application programming interface) to make it

more developer friendly.

Finally, we also agree with the conclusion made by Juan Carlos et.al in 36 stating

that in general, FPGA-based design for real robotic application is difficult due to

two main reasons: difficulty in changing platform’s functionality (very often requires

specialized person) and tools system dependency. However, we also believe that our

embedded factor graph framework on SoC has a prospective future, because we

see an increasing trend to bring the SoC and FPGA design into a heterogeneous

computing platform (such as SystemC, OpenCL, etc.) and also an increasing effort

to bring the embedded Linux kernel into the Linux mainstream. This, in turn, will

make the future optimization and further development for broader applications

easier. Furthermore, the price per chip for SoC technology also shows decreasing

tendency, which makes an SoC-based solution a very good choice in the future.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

28 I. Sugiarto et al.

6. Conclusion

In this paper, we describe our work on developing an embedded factor graph that

can be used to perform reasoning, which is very useful in many robotic applications.

We exemplify the use of our embedded factor graph in a real robotic experiment,

where the factor graph is used for a sensor fusion to reinforce the robot navigation

. We incorporate population coding that mimics the brain-style information pro-

cessing for encoding values of factor graph’s parameters. Such an encoding strategy

offers two benefits: compact representation and reliability under uncertainty. To

achieve a high-performance result, we implemented the framework on a dedicated

hardware. We propose to use the resourceful FPGA in an SoC as an accelerator for

a factor graph-based program running on the ARM processor of the SoC. As an

accelerator, the FPGA is responsible for transforming the sequential nature of the

sum-product computation in a belief propagation algorithm into a parallel process-

ing. The result showed that the accelerator can speed up the computation, eight

times faster than the normal run of the factor graph. We incorporated optimization

strategies from the perspective of the hardware designer to achieve high efficiency

and flexibility. To achieve high scalability and interoperability, we encapsulated our

factor graph modules and provide them as embedded Linux modules. With this

setup, the future users can conveniently use our factor graph engine to perform

many experiments and explorations in order to find the best model for their spe-

cific application. From the experimental result and our analysis, we are confident

that we have already built an important and fundamental framework for a more

powerful inference system. For our future work, we envision to extend our embedded

factor graph into a massively-distributed computing engine.

Acknowledgement

This work was supported partially by DAAD (Deutscher Akademischer Austausch-

dienst e.V.) under the grant A/10/76323.

References

1. C. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).
2. F. Kschischang, B. Frey and H.-A. Loeliger, Factor graphs and the sum-product al-

gorithm, IEEE Transactions On Information Theory 47(2) (2001) 498–519.
3. H.-A. Loeliger, An introduction to factor graphs, Signal Processing Magazine, IEEE

21(Jan 2004) 28–41.
4. J. Yedidia, W. Freeman and Y. Weiss, Constructing free-energy approximations and

generalized belief propagation algorithms, IEEE Transactions on Information Theory
51(7) (2005) 2282–2312.

5. B. J. Frey and N. Jojic, A comparison of algorithms for inference and learning in
probabilistic graphical models, IEEE Transactions on Pattern Analysis and Machine
Intelligence 27(9) (2005) 1–25.

6. H. Guo and W. Hsu, A survey of algorithms for real-time bayesian network infer-
ence, in AAAI/KDD/UAI-2002 Joint Workshop on Real-Time Decision Support and
Diagnosis Systems 2002 , (Edmonton, Alberta, Canada, 2002).

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

FPGA-based Hardware Accelerator for an Embedded Factor Graph with Configurable Optimization 29

7. V. Namasivayam, A. Pathak and V. Prasanna, Scalable parallel implementation of
bayesian network to junction tree conversion for exact inference, in The 18th In-
ternational Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD’06), (Ouro Preto, Minas Gerais, Brasil, 2006).

8. V. Sudhakar and C. Murthy, Efficient mapping of backpropagation algorithm onto a
network of workstations, IEEE Transactions on Systems, Man, and Cybernetics, Part
B 28 (1998) 841–849.

9. S. Aluru and N. Jammula, A review of hardware acceleration for computational ge-
nomics, IEEE Design Test 31(February 2014) 19–30.

10. A. Papadopoulosa, I. Kirmitzogloub, V. Promponasb and T. Theocharides, Fpga-
based hardware acceleration for local complexity analysis of massive genomic data,
INTEGRATION, the VLSI Journal 46(June 2013) 230–239.

11. M. Silberstein, A. Schuster, D. Geiger, A. Patney and J. Owens, Efficient computation
of sum-products on gpus through software-managed cache, in Proceedings of the 22nd
annual international conference on Supercomputing (ICS’08), (ACM, New York, NY,
USA, 2008), pp. 309–318.

12. N. Piatkowski, Parallel algorithms for gpu accelerated probabilistic inference, in NIPS
2011: workshop on parallel and large-scale machine learning , (Sierra Nevada, Spain,
2011).

13. R. Nasre, M. Burtscher and K. Pingali, Morph algorithms on gpus, in the 18th
ACM SIGPLAN symposium on Principles and practice of parallel programming
(PPoPP’13), (Shenzhen, China, 2013), pp. 147–156.

14. M. Pandey, J. Ubhi and K. Raju, Journal of Circuits, Systems and Computers 25(4)
(2016).

15. S. Wu, S. Amari and H. Nakahara, Population coding and decoding in a neural field:
a computational study, Neural Computation 14(5) (2002) 999–1026.

16. W. Gerstner and W. Kistler, Spiking Neuron Models: Single Neurons, Populations,
Plasticity (Cambridge University Press, 2002).

17. I. Sugiarto, P. Maier and J. Conradt, Reasoning with discrete factor graph, in IEEE
International Conference on Robotics, Biomimetics, and Intelligent Computational
Systems (ROBIONETICS), 2013 , (IEEE, November 2013), pp. 170–175.

18. S. Russell and P. Norvid, Artificial Intelligence: A Modern Approach, 3rd Ed. (New
Jersey: Prentice Hall, 2010).

19. K. Murphy, The bayes net toolbox for MATLAB, Computing Science and Statistics
33 (2001) p. 2001.

20. J. Mooij, libDAI: A free and open source C++ library for discrete approximate in-
ference in graphical models, Journal of Machine Learning Research 11(August 2010)
2169–2173.

21. F. Dellaert and M. Kaess, Square root sam: Simultaneous location and mapping
via square root information smoothing, International lJournal of Robotics Research
(IJRR) 25(12) (2006) 1181–1213, Special issue on RSS 2006.

22. M. Kaess, A. Ranganathan and F. Dellaert, isam: Incremental smoothing and map-
ping, IEEE Transactions on Robotics (TRO) 24(Septmber 2008) 1365–1378.

23. V. Manshinghka, Natively Probabilistic Computation, PhD thesis, Department of
Brain & Cognitive Sciences, Massachusetts Institute of TechnologyJune 2009.

24. F. Palmieri, Learning non-linear functions with factor graphs, IEEE Transactions on
Signal Processing 61(17) (2013) 4360–4371.

25. Y. Zhao, J. Xu and Y. Gao, A parallel algorithm for bayesian network parameter
learning based on factor graph, in 2013 IEEE 25th International Conference on Tools
with Artificial Intelligence (ICTAI2013), (Washington DC, USA, 2013), pp. 506–512.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

March 13, 2018 18:5 WSPC/INSTRUCTION FILE jcsc-manuscript-rev2

30 I. Sugiarto et al.

26. J. Dean and S. Ghemawat, Mapreduce: Simplified data processing on large clusters,
Communication of the ACM 51(January 2008) 107–113.

27. A. Steimer, Neurally Inspired Models of Belief-Propagation in Arbitrary Graphical
Models, PhD thesis, ETH Zürich, Switzerland2012.

28. S. Lange, N. Sunderhauf and P. Protzel, Incremental smoothing vs. filtering for sensor
fusion on an indoor uav, in IEEE International Conference on Robotics and Automa-
tion (ICRA) 2013 , (Karlsruhe, Germany, 2013), pp. 1773–1778.

29. H. Chiu, X. Zhou, L. Carlone, F. Dellaert, S. Samarasekera and R. Kumar, Con-
strained optimal selection for multi-sensor robot navigation using plug-and-play fac-
tor graphs, in IEEE International Conference on Robotics and Automation (ICRA)
2014), (Hongkong, China, 2014).

30. V. Indelman, S. Wiliams, M. Kaess and F. Dellaert, Information fusion in navigation
systems via factor graph based incremental smoothing, Robotics and Autonomous
Systems 61(August 2013) 721–738.

31. T. Czajkowski, Physical Synthesis Toolkit for Area and Power Optimization on FP-
GAs, PhD thesis, Department of Electrical and Computer Engineering, University of
Toronto, Canada2008.

32. B. Mesman, Q. Zhao, N. Busa and K. Leijten-Nowak, Reconfigurable instruction-set
application-tuning for dsp, Journal of Circuits, Systems and Computers 12(3) (2003)
333–351.

33. I. Sugiarto and J. Conradt, Discrete belief propagation network using population
coding and factor graph for kinematic control of a mobile robot, in IEEE International
Conference on Computational Intelligence and Cybernetics (CYBERNETICSCOM)
2013 , (Yogyakarta, Indonesia, 2013), pp. 136–140.

34. S. Aqueel and K. Khare, Design and fpga implementation of ddr3 sdram controller for
high performance, International Journal of Computer Science & Information Tech-
nology (IJCSIT) 3(4) (2011) 101–110.

35. C. Axenie and J. Conradt, Cortically inspired sensor fusion network for mobile robot
egomotion estimation, Robotics and Autonomous Systems 71 (2015) 69–82, Emerging
Spatial Competences: From Machine Perception to Sensorimotor Intelligence.

36. J. Eugenio and M. Estrada, Hardware/software FPGA architecture for robotics ap-
plications, in the 5th International Workshop on Reconfigurable Computing: Architec-
tures, Tools and Applications, ARC’09, (Springer-Verlag, Berlin, Heidelberg, 2009),
pp. 27–38.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
05

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

