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Abstract. Whether efficient road traffic control needs accurate mod-
elling is still an open question. Additionally, whether complex models
can dynamically adapt to traffic uncertainty is still a design challenge
when optimizing traffic plans. What is certain is that the highly non-
linear and unpredictable real-world road traffic situations need timely
actions. This study introduces TRAMESINO (TRAffic Memory System
INtelligent Optimization). This novel approach to traffic control mod-
els only relevant causal action-consequence pairs within traffic data (e.g.
green time - car count) in order to store traffic patterns and retrieve
plausible decisions. Multiple such patterns are then combined to fully
describe the traffic context over a road network and recalled whenever
a new, but similar, traffic context is encountered. The system acts as a
memory, encoding and manipulating traffic data using high-dimensional
vectors using a spiking neural network learning substrate. This allows the
system to learn temporal regularities in traffic data and adapt to abrupt
changes, while keeping computation efficient and fast. We evaluated the
performance of TRAMESINO on real-world data against relevant state-
of-the-art approaches in terms of traffic metrics, robustness, and run-
time. Our results emphasize TRAMESINO’s advantages in modelling
traffic, adapting to disruptions, and timely optimizing traffic plans.

1 INTRODUCTION

Solving traffic congestion in urban agglomerations is still a problem resistant
to straightforward solutions despite the large amount of research and systems
developed to analyze [20], model [23], and control road traffic [26]. Systems de-
ployed in real-world [TO/T4J6] use a traffic model [24J7] that heavily influences
the run-time performance of the overall system. Basically, the role of the traffic
model is to describe the dynamics of the traffic flow and to cope, eventually, with
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unforeseen deviations (i.e. disruptions) in traffic patterns [24]. But, in order to
achieve that, the system needs to optimize multiple metrics, such as spatial and
temporal traffic demand, traffic volume [3]. This implies a substantial compu-
tational cost that might hinder the overall real-time capabilities of the system
and increase the cost of large scale traffic optimization. It is the system de-
signer’s duty to make a trade-off between two dimensions, namely performance
and execution time. The present study addresses the problem of such costly op-
timization routines and explores a novel approach to speed-up traffic control,
named TRAMESINO (TRAffic Memory System INtelligent Optimization). At
the core of TRAMESINO is the capability to exploit the similarity and invariant
features of traffic flow patterns. Basically, by storing relevant causal patterns (i.e.
action/consequence: allocated green time/measured car count) in traffic flows,
one can bypass the costly constrained optimization routines typically employed
in traffic control systems. Such patterns can be correlated in time to fully de-
scribe the traffic context in an entire region. Given ”cues” of traffic data (i.e.
current car count), the system can ”recover” a plausible cause (i.e. the allocated
green time). To achieve this TRAMESINO uses:

— an efficient encoding scheme for traffic timeseries covariates;

— a mechanism storing associations among traffic timeseries covariates;

— an efficient learning framework to natively process the encoded quantities
and implement the association dynamics.

In the remainder of this section, we ground our contribution and emphasize those
relevant features and drawbacks of adaptive traffic control systems motivating
our study.

1.1 Optimization-based Adaptive Traffic Control Systems

Traditionally, flow optimization for coordinated traffic signals is based on average
travel times between intersections and average traffic volumes at each intersec-
tion [9]. However, most of these approaches do not consider the stochastic nature
of high-resolution field traffic data or capture it through computationally expen-
sive processes, such as Markov Decision Processes (MDP)[22]. Beyond stochas-
ticity, the community also explored the use of mixed-integer linear programming
(MILP) for optimizing the control of traffic signals, in particular, offsets, split
times, and phase orders [I1]. The approach provided optimal results but with a
high computational cost. Additionally, such systems couldn’t handle changes of
the controlled variables in real-time due to the optimization process that needs
to iterate to convergence. In a first attempt to exploit the periodic nature of
the traffic signals, the work in [I8] formulated the traffic light optimization into
a continuous optimization problem without integer variables, by modeling traf-
fic flow as sinusoidal. The system solved a convex relaxation of the non-convex
problem using a tree decomposition reduction with very good performance in
simulations, but it lacked the capability to scale and adapt to traffic disruptions.
Finally, relying on predicting arrivals at coordinated signal approaches the work
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in [2] proposed the link pivot algorithm that assumed nearest-neighbor interac-
tions between signals in cyclic flow profiles to model traffic flows. Despite its well
performing optimization, the algorithm couldn’t handle unpredictable changes
in platoon shapes (i.e. occasionally caused by platoon splitting and merging) or
prediction during saturated conditions (i.e. traffic jams, accidents) limiting its
use in real-world deployments. As we briefly emphasized hitherto, aspects such
as stochasticity, simultaneous traffic assignment and traffic signal calculation,
periodicity, regional scaling, and real-time constraints, describe real-world traf-
fic situations. Each system excels in handling a sub-set of these aspects only and
cannot capture their combined impact on traffic dynamics.

1.2 Beyond Optimization

Historically, neural networks were employed in traffic control to exploit its in-
trinsic temporal dynamics. A reference work in this category is the study of [16]
which proposed a Hopfield network-based system designed to capture temporal
patterns. Opposite to optimization approaches, such a system exploited the in-
teraction between neurons whose dynamics modelled traffic signals state changes
and stochasticity. These first steps away from optimization, were extended in [I7]
by emphasizing the purpose of feedback loops for decreasing the differences of the
conflicting flows, measured during a congestion or large number of waiting vehi-
cles. This solution enabled regional scaling and simultaneous traffic assignment
and traffic signal calculation using the same network, by exploiting the capability
to describe and solve a constraint satisfaction problem of Hopfield networks[g].
Using a simplified, linear Hopfield neural network, the study in [I2] proposed
a system capable of solving an arbitrary set of (linear) equations through on-
line learning. Interestingly, the typical Hopfield network was augmented with
an additional feed-forward layer used to compute the Moore-Penrose General-
ized Inverse (i.e. pseudoinverse) of the weight connection matrix. Calculating
the pseudoinverse, allowed the system to actually compute a "best fit” (in least
squares sense) solution to the evolving traffic dynamics model (i.e. unexpected
disruptions "move” the optimum in solution space) in a parallel fashion. Ad-
dressing the scaling problem, the study in [27] employed an augmented Hopfield
network to solve mixed integer programming. The approach exploited the tem-
poral dynamics of the Hopfield network to find better solutions than Lagrangian
relaxation and only very rarely converged to unfeasible solutions. Finally, de-
spite the advantages that systems, such as Hopfield networks, have, there are
some known barriers to deploy them to real-world scenarios. A first aspect refers
to the limited memory capacity of Hopfield networks, and the actual compu-
tational cost of storing a large number of memories - which increases with the
number of neurons. Another strong limitation is the pattern orthogonality as-
sumption, which limits the recall accuracy, especially at scale. Considering the
unique and optimal recall of Hopfield networks, there are strong limitations due
to the existence of local minima and spurious states of attraction. Such a limi-
tation is stronger in the case of storing high-dimensional traffic contexts, where
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due to increased similarity, identifying the discrepancy is difficult, especially in
the presence of a large number of states of attraction.

1.3 Motivation and Contributions

Besides the relevant aspects already mentioned, a significant drawback of exist-
ing traffic control systems is that they fail to fully exploit the causal coupling
(or associations) between traffic control signals and traffic flow dynamics. It is
known that, despite being highly nonlinear, traffic dynamics is regular on certain
timescales. Such regularities together with available sensory data can be used to
judiciously extract traffic contexts that can be subsequently used in optimizing
future traffic situations. Basically, the associations among the control signals (i.e.
green time / red time) and the measured outcomes (i.e. flow of cars) capture
the dynamics of traffic on a road, intersection, or region. Obviously, in order to
optimize flow and minimize delay time, the traffic control system would need to
find the best traffic light timing. This functionality is described in Figure
In this context, our contribution focuses on four main points:

— optimizing the time for decision-making and ”short-circuit” re-computation
of a control signal (i.e. green time allocation) by exploiting previously learnt
patterns of traffic context (i.e. traffic flow — green time pair). Metaphorically,
TRAMESINO accumulates wisdom over traffic optimization, and uses the
acquired knowledge to bypass possibly computationally complex decision-
making processes based solely on the ongoing traffic perception.

— representing traffic contexts (i.e. regional traffic flow, local allocated green
times, etc.) as a "memory”, basically a high-dimensional numeric vector
depicting the traffic state at a certain moment in time. Additionally, such
memories can be stored and recovered using a learning system, which is at
the core of TRAMESINO. This way TRAMESINO can exploit the descrip-
tive power of pairs of actions and their outcomes in order to learn memo-
ries from historical data. Such memories of associations speed-up operation,
when facing new traffic situations by recalling the most similar (previously
seen) traffic context. To support this speed-up, the contexts are represented
using high-dimensional vectors, which map the complex dynamics to simple
(algebraic) operations in high-dimensional spaces.

— exploiting learned context associations among patterns of traffic (i.e. traffic
flow — allocated green time) to infer what would be the most plausible traffic
flow when a control signal (i.e. green time) is available and what would be
the green time for measured flow values. In other words, given a partial
context, TRAMESINO recalls the most similar context learnt in the past by
restoring the missing part of the context (i.e. either green time for measured
flow or flow for applied green time) - similarly to an autoassociative memory.

— release of a new real-world dataset, used in the TRAMESINO experiments,
which contains 74 days of real urban road traffic data from 8 crosses in a
city in China.

The main problems the proposed system solves are:



TRAMESINO 5

Space-time Diagram of the Signalized Traffic Light Operation TRAMESINO Processing Steps for Training and Inference
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Fig. 1. TRAMESINO System functionality overview.

efficiently representing traffic context using the measured data (i.e. traffic

flow) and control signals (i.e. allocated green time) in a system capable of

learning multiple associations among such causal data encoded in efficient
high-dimensional vectors;

— avoiding costly optimization methods and control signal re-computation by
exploiting previously learnt patterns of traffic data and infer, given partial
information (i.e. either traffic flow or allocated green time), what would be
the best corresponding full context corresponding to the partial information;

— scalability through storing multiple memories (i.e. multiple full traffic con-
texts) and deployment at different granularity (e.g. per lane, per direction,
per intersection);

— the efficient computation of traffic control signals (i.e. green time) that embed

and exploit the intrinsic traffic constraints and physics without an explicit

need to model the constraints;

2 MATERIALS AND METHODS

In this study, we introduce TRAMESINO, a flexible framework and system capa-
ble to learn and store associations among measured traffic data (e.g. traffic flow)
and the corresponding traffic control signal generating it (i.e. allocated green
time). In order to speed up computation in similar, but novel, traffic situations,
the system recalls the most plausible learnt association.

2.1 Introducing TRAMESINO

TRAMESINO is an associative memory system for traffic flow optimization. The
system builds a vector description of the current traffic context from timeseries
of specific traffic data (i.e. flow of cars, green time, traffic density). The key ingre-
dient of TRAMESINO is the Holographic Reduced Representation (HRR)[19],
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responsible for the traffic data encoding, learning, and computation with the
encoded quantities. Such a framework demonstrated already that structured
vector-representations are able to capture relations and mutual influence be-
tween multiple traffic context data [I5].

HRR are a type of Vector Symbolic Architectures (VSAs) [B] that describe
a family of modelling approaches to represent physical quantities by mapping
them to (high-dimensional) vectors. Beside the numerical structure underlying
the vectors, the core computational components of a VSA are a measure of simi-
larity and typically two algebraic operations, namely superposition and binding.
Superposition implements the basic addition and combines multiple vectors to
create a vector similar to the input vectors. Binding implements the basic mul-
tiplication in order to produce highly dissimilar response to both input vectors.
A very important aspect is the fact that binding is invertible and preserves dis-
tance metrics which support the associative memory implementation. Within
TRAMESINO, superposition allows storing multiple traffic contexts defined by
available traffic data (i.e. flow, green time, cycle time, phase length), whereas
binding provides the core mechanism to recall previously stored contexts given a
similarity metric. An important property of the high-dimensional vector space in
TRAMESINO is that with a very high probability all stored vectors are dissim-
ilar to each other (i.e. quasi-orthogonal). This enables the system to implement
the associative memory behavior using simple operations in high dimensions.
Finally, unlike many traditional neural networks, HRR do not rely on backprop-
agation but rather on algebraic operations on high-dimensional vectors which are
embarrassingly parallel operations that can be performed efficiently (in principle,
in constant time).

Data representation TRAMESINO uses high-dimensional HRR vectors and
operations to represent traffic contexts (i.e. action-consequence pairs) and do
computation (i.e. associative memory). Intuitively, for practical use, TRAMESINO
needs to store multiple such contexts as memories to be able to handle arbitrary
new contexts. As mentioned, in order to store multiple vectors encoding traffic
contexts, TRAMESINO utilizes bundling, which accounts for an element-wise
addition of the vectors. For the recall phase, TRAMESINO utilizes binding,
which is basically implementing a circular convolution. We now introduce the
formalism behind the specific HRR operations in TRAMESINO.

HRR allow for complex vector values, i.e., N C C and use a multiplication
operation ® based on circular convolution. For any two vectors of size D, x,y €
Vb (N), circular convolution ® is defined as

D-1
Z=X®Yy with z; = Z TRY(j—k)ymodD- (1)
k=0
Circular convolution can efficiently be computed using the the Discrete Fourier
Transform (DFT) [I] defined as the function
127

oD . (D D1 —jk\PT ,
DFT:CP - C ,x—><zj:0 (5 )k:o with (p = exp (= ). (2)
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Similarly, the Inverse Discrete Fourier Transform (IDFT) is defined as the func-
tion
D D 1 ~0-1 k)P
IDFT :CP - C ,x—>(52j20 z; D>k:0' (3)

In TRAMESINO, we make use of the fact, that circular convolution can be
written as a combination of the DFT, IDFT, and element-wise multiplication ®
[19]. Using the convolution theorem, we can calculate the circular convolution
of any two vectors v,w € Vp(N) by

v®w=IDFT (DFT(v) ® DFT(w)), (4)

with ® denoting element-wise multiplication in this case. This induces that cir-
cular convolution obeys the same commutative and associative rules as element-
wise multiplication. Additionally, we define the convolutive power as the real
part of the transformed vector

v? .= R(IDFT (DFT (v)")), (5)

This operation is used when recalling a traffic memory. This involves building
the HRR vector of a partial context (i.e. traffic flow car count), bundling and
binding it to existing memories, and then computing the similarity.

Next, we describe the encoding, its constraints, and the considerations to
handle temporal aspects (i.e. traffic contexts are timeseries of various traffic
measured quantities). TRAMESINO uses the unitary base of vectors b for en-
coding (real-valued) scalar traffic quantities (i.e. flow of cars, green time) in
high-dimensional HRR vectors, which are in fact combinations of basis vectors
using simple algebraic operations. Additionally, it uses Cy, ..., Cp to represent
each type of traffic data and Ty, ..., Tp for encoding the temporal structure (i.e.
timestamps). As a design choice, we use unitary vectors u, since they have some
desirable properties, namely |u| = 1, u? is still unitary for any p € R, and convo-
lution with unitary vectors preserves the norm, i.e., |v| = |v ® u| for any other
vector v. We can now create actual HRR vectors V; of different traffic quantities

values v; as
D

Vi=Y Cj@b"”, (6)

Jj=1

where s is a scaling factor. To additionally encode the temporal structure, we
simply bind each traffic quantity vector V; to a vector T  encoding the timestamp,

D D
Vp=>" C; @b | T, (7)
1

i=1 \j=

Learning and inference In TRAMESINO, the HRR traffic data represen-
tation and the HRR binding and bundling operations, are implemented in the
Neural Engineering Framework (NEF) [4]. NEF offers a systematic method of
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”compiling” high-level descriptions, such as vector convolution, correlation, and
similarity, into synaptic connection weights between populations of spiking neu-
rons with efficient learning capabilities. In NEF, neural populations represent
time-varying signals, such as traffic flow data, through their spiking activity.
Such signals drive neural populations based on each neuron’s tuning curve, which
describes how much a particular neuron will fire as a function of the input signal.

Formally, we consider A a population of N € N neurons encoding a subset
V' of a real-valued vector space, i.e., V. C R"™, representing measurable traffic
quantities. Given a function x(t) : R — V, we can write the activity a; at time
t of the i-th neuron in a neural population encoding a time-varying vector (e.g.
traffic flow data) x(t) as a spike train,

a; (X(t)) = i&(t — tj) = Gi(ai<ei,x(t)) + Jl) for 1 <i <N, (8)

where G; is the neural non-linearity, «; is the gain of the neuron, e; is the
neuron’s preferred encoding vector, J; describes the neural background activity,
and t; are the m; spike-times of the i-th neuron, and (.) is the inner product. To
decode the traffic quantities x(t) back out of the neural population A, the spike
train is convolved * with an exponentially decaying filter i : R — R resulting in

G Gx(0)) = Y A(0) 600~ 1) = Y he — 1), ©

We consider here the exponential decaying filter given by h: R — R, t — eTzﬂt,
where 7, is the post-synaptic time constant. Through filtering we obtain an
estimation X(¢) of the original input x(¢) as a weighted sum with some decoder
values d;

N
x(t) =) _d; (x(t)) d;. (10)
i=1

To calculate the optimal decoders d;, the system needs to minimize the error
between input x(t) and decoded output X(t)

N 2
E = / (x(t)—Zdi (x(t))di> dx(t). (11)

NEF solves for the decoders d; by default using an efficient least squares opti-
mization [4].

Encoding and decoding operations on NEF neural populations representa-
tions allow us to encode traffic flow signals over time, and decode transforma-
tions (i.e. mathematical functions) of those signals. In fact, NEF allows us to
decode arbitrary transformations of the input traffic data by computing func-
tions across the connections between the populations of neurons encoding the
traffic data. For instance, if we consider A resp. B populations of N resp. M
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neurons encoding a time-varying vector x(t) € V C R" (e.g. traffic flow) resp.
y(t) € W C R™ (e.g. traffic density) and a function f: V — W C R™. In order
to approximate the function f (i.e. traffic flow - density dependency) across a
connection from population A to population B, TRAMESINO calculates a set
of decoder values dzf for population A by minimizing the error

N 2
E- / (f(X(t))—Zdi <x<t>>d{> dax(t). (12)
i=1

Given encoders ef and gain osz for 1 < j < M of population B, we can derive a
weight matrix for the connection from A to B approximating the function f by

wij:afd{Lef forl1<i<Nand1l<j<M, (13)

where L is a M x N linear operator. Here, NEF makes the assumption, that
connection weights can be factored into encoders, decoders, and a transform.
Finally, in order to implement the associative memory behavior, we need to de-
scribe the dynamics of such an operation. But first we introduce how can we
implement such dynamics in populations of spiking neurons. If we consider A

Fig. 2. Dynamics implementation of TRAMESINO associative memory.

a population of neurons with an incoming connection approximating the func-
tion f:V — W C R™ and a recurrent connection approximating the function
g: W — W (cf. Fig. . Thus, the overall function the population is approxi-
mating is

y(t) = h(t) * (f(x(t)) + 9(y())) (14)

with exponential decaying filter function h:R — R, ¢t — e By setting the
functions g(y(t)) = Ta(y(t)) + y(¢) and f(x(t)) = 76(x(¢)) - with @ and b arbi-
trary nonlinear functions - we obtain a neural model approximating a dynamical
system. The learning rule implementing the autoassociative memory needs to
modify the encoding vectors of active neurons to be selective to an input vector
(i.e. a partial context, traffic flow). Basically, this operation adjusts the connec-
tion weights so that a small number of distinct neurons respond to each such
partial traffic context - by triggering the memory most similar to it. For this
we used the three layer neural autoassociator using NEF spiking neurons from
[25]. Given a traffic context vector = encoded by the activity of the input neural
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population, the filtered activity a(t) of neurons in the middle layer, and the ma-
trix e whose rows are the ”preferred traffic context” vectors of the middle layer
neurons, we modify the ”preferred traffic context” vectors of the middle layer
neurons according to:

de(t)
ot

— —na(t)e(t) + n(a()x" (1), (15)

where 7 is the learning rate. Changing the ”preferred traffic context” vectors
corresponds to changing the connection weights using a local learning rule in
Equation [I5} This system has been proven to have high accuracy, a fast, feed-
forward recall process, and efficient scaling, requiring a number of neurons linear
in the number of stored associations.

Parametrization In all our experiments, within T RAMESINdﬂ traffic flow
readings from an urban region were concatenated in a context vector (i.e. mem-
ory) of size D = 1024, each encoding neural population had a size of 100 neurouns,
a new memory was stored for each traffic light and each phase every n = 10 traf-
fic light cycles (i.e. accounting for a memory every approx. 5 minutes), and a new
green time was recalled at the generation of each new plan (i.e. approx. every 2
minutes). Note that, increasing the number of neurons (i.e > 1000) provides a
more accurate encoding and, hence results, but the computation time increase
supra-linearly. Our parametrization reflects the trade-off to make for the com-
putation time gain. Figure [3| provides an overview on the traffic context data,
the encoding process, and the similarity calculation processes, respectively.

3 Experiments and Results

In our experiments, we used the SPRING-MUSTARD (Spring season Multi-
cross Urban Signalized Traffic Aggregated Region Dataset) real-world dataset,
which contains 74 days of real urban road traffic data from 8 crosses in a city in
Chinaﬂ The road network layout is depicted in Figure [4| a. In order to perform
experiments and evaluate the system, we simulated the real-world traffic flows in
the Simulator for Urban Mobility (SUMO) [13]. The realistic vehicular simulator
generates routes, vehicles, and traffic light signals that reproduce the real car
flows in the real-world dataset. In order to evaluate the adaptation capabilities,
we systematically introduced progressive flow magnitude disruptions over the
74 days of traffic flow data. Such degenerated traffic conditions describe non-
recurrent events such as sport events, accidents or adverse weather, for instance.
More precisely, accidents and adverse weather typically determine a decrease in
the velocity which might create jams, whereas, special activities such as football
matches or beginning/end of holidays increase the flow magnitude. Using the

3 Codebase at: https://github.com/omlstreaming/aaltd2021
4 The SPRING-MUSTARD real-world dataset used in our experiments is available at:
http://doi.org/10.5281/zenodo.5025264
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Fig. 3. TRAMESINO System Encoding and Similarity Mechanisms.

a. Real road network layout b. Realistic traffic data profile (normal vs. disrupted traffic)
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Fig. 4. Real-world Road Network Layout and Normal vs. Disrupted Data.

real-world flow in the dataset and SUMO, we reproduce the traffic flow behavior
when disruption occurs starting from normal traffic flow data by reflecting the
disruption effect on vehicles speed and/or network capacity and demand. We
sweep the disruption magnitude from normal traffic up to 3 levels of disrup-
tion (i.e. low, medium, high) reflected over all the 8 crosses over 24 hours. The
evaluated systems are the following:

— BASELINE: static traffic planning that uses pre-stored timing plans com-

puted offline using historic data.

MILP: Mixed-Integer Linear Programming traffic optimization implementa-

tion inspired from [I§].

— HOPFIELD: Hopfield neural network implementation inspired from [16].

— TRAMESINO: instantiation of our system per each traffic light installed in
each direction of each of the 8 crosses in the road network.
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For the evaluation of the different approaches (i.e. BASELINE, MILP, HOP-
FIELD, and TRAMESINO), we followed the next procedure:

— Simulate real-world SPRING-MUSTARD flows in SUMO and store the re-
sults (without disruptions and with the 3 levels of progressive disruptions)
for each of the five approaches.

— Compute relevant traffic aggregation metrics (i.e. average trip duration, av-
erage speed, and waiting time, respectively).

— Rank experiments depending on performance.

— Perform statistical tests (i.e. a combination of omnibus ANOVA and posthoc
pairwise T-test with a significance p = 0.05) and adjust ranking depending
on significance.

— Evaluate best algorithms depending on ranking for subsets of relevant met-
rics (i.e. the metrics with significant difference).

Our evaluation results are given in Table[I|where each of the approaches is ranked
across the disruption magnitude scale (no disruption (N) to max disruption (H))
over the specific metrics (i.e. average trip duration, average speed, and waiting
time, respectively). For flow magnitude disruptions, the level of disruption (i.e.
low (L), medium (M), and high (H)) is a factor used to adjust the number of
vehicles during the disruption. As one can see in Table [IJ TRAMESINO over-

System/
Disruption level N L M H Ranking Deviation

Average trip duration(s)

BASELINE 168.805 181.217 265.546 270.167 4 49.86%
MILP 118.336 132.406 167.173 167.673 1 0.0%
HOPFIELD 151.281 151.381 223.017 257.464 3 32.28%
TRAMESINO 156.379 157.371 203.775 236.224 2 28.44%
Average speed(km/h)
BASELINE 58.15 56.78 49.38 47.50 4 10.95%
MILP  59.30 60.00 59.40 59.10 1 0.0%
HOPFIELD  59.48 59.97 49.28 46.18 3 9.84%
TRAMESINO  59.78 59.02 52.08 48.28 2 8.14%
Waiting time(s)
BASELINE 1645 18.53 32.59 35.13 4 7.02%
MILP  13.98 16.14 15.14 15.07 1 0.0%
HOPFIELD 13.98 14.96 29.32 37.29 3 5.84%
TRAMESINO  14.95 14.57 22.16 29.01 2 2.96%

Table 1. Performance evaluation of the different systems in normal traffic (N) and with
varying disruption levels: low (L), medium(M), and high(H). Besides absolute ranking
we take the average performance deviation from the optimal solution of MILP.
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comes both HOPFIELD and BASELINE, but deviated from the optimal MILP
solution with under 30% in average trip duration and waiting time, and just
under 3% in average speed. This is due to the optimal solution that MILP
finds given the constraints that the values of the traffic quantities rely upon.
However, this performance decreases in the typical metrics is successfully com-
pensated by the run-time analysis in Figure |5} Here, when simulating one day
of traffic, TRAMESINO demonstrates that storing and recalling traffic context
memories is almost 2x faster than BASELINE and up to 5x faster than MILP,
when considering the actual optimization time (i.e. for TRAMESINO store and
recall based on similarity, constrained optimization convergence for MILP). Ad-
ditionally, the overall TRAMESINO processing only took around 12% from the
total simulation time of a single day (i.e. approx. 24 minutes). A specific anal-

= Optimization time (s)
= Total time (s)
MILP

HOPFIELD

| SE———
| SRS

TRAMESINO

Simulation Time (s) 0 500 1000 1500 2000 2500 3000 3500 4000

TRAMESINO BASELINE HOPFIELD MILP
m Optimization time (s) 175.2699437 418.8146019 570.0803573 970.0803573
m Total time (s) 1451.665398 1601.359572 2278.111582 3278.111582

Fig. 5. Run-time performance evaluation for the real-world flows in the simulator.

ysis and evaluation for TRAMESINO is the accuracy and robustness of the
high-dimensional encoding. We explored how does the size of the encoding D
influence the encoding and decoding of each memory (i.e. in the storing and re-
call processes of TRAMESINO). Intuitively, a higher dimension of the encoding
will support more accurate representations. This is visible in Figure[6] where we
stored and recalled a varying number of traffic data memories of different dimen-
sions. Please recall that this process describes the entire functionality pipeline
of TRAMESINO described in Figure

4 DISCUSSION

Traffic optimization and control is a complex multi-factorial problem. Such a
problem requires accurate models, robust control, and, above all, efficient com-
putation, to meet real-world constraints. But, there is a trade-off to be made
in order to accommodate all these objectives. Combining human expertise, sim-
ple models, and heuristics, the typical static plans (i.e. BASELINE) are the
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Fig. 6. Encoding/decoding accuracy of TRAMESINO memories.

best choice when there is a predictable traffic demand and no dynamic changes
in the flow (i.e. accounts for a look-up-table query). Such models fail to cap-
ture and accommodate sudden changes in the traffic context and are typically
used as fall-back mechanisms. Increasing the price of modelling and computa-
tion with mathematical programming and constrained optimization, adaptive
systems (i.e. MILP[I]]) are the choice for accurate responses to abrupt changes
in traffic dynamics. As computing new traffic light plans is required very often
(e.g. every 5 mins), optimization-based systems reach their limitation at scale,
when controlling large urban networks. Constrained optimization might provide
the optimal solution but miss the timing. Trying to balance accuracy and com-
putation efficiency, while exploiting the regularity in traffic patterns for robust
control, optimization-free methods [I6] were developed. Such class of methods,
of which TRAMESINO is a member, try to exploit temporal regularities in the
traffic data to store relevant patterns of action-consequence (i.e. green time /
flow of cars) to be able to bypass expensive optimization.

Looking at the evaluation in Table [1] we see that the accuracy trade-off is
visible, optimization-free methods (i.e. HOPFIELD and TRAMESINO) rank-
ing worse than MILP in the traffic specific performance metrics. This is due to
the fact that MILP’s constrained optimization focuses on satisfying all depen-
dencies among traffic data quantities (i.e. traffic flow, green time, phase offset)
in order to provide green time values that minimize trip duration, maximize
speed, and reduces waiting time, respectively. The power of such an approach
is visible also when progressive disruptions are introduced over the daily traffic
patterns. TRAMESINO outperforms the HOPFIELD model due to its efficient
computation using NEF and spiking neural networks. This allows for an efficient
high-dimensional data representation, simple algebraic operations, and memory
dynamics, that can exploit traffic data regularities. These regularities captured
by TRAMESINO’s memory yield fast adaptation to sudden changes in the traf-
fic flow patterns. As shown in Table [T] despite the increasing disruption levels
TRAMESINO is still providing the second best speed, average trip duration, and
waiting time. Finally, due to its efficient computation TRAMESINO dominates
in terms of run-time (see Figure [5)). Thanks to its learning and adaptation ca-
pabilities, TRAMESINO captures traffic regularities when storing new context
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memories and overcomes the judiciously-parametrized static plan of the BASE-
LINE system. This offers a serious gain in execution time, avoiding relaxation
of HOPFIELD and the optimal convergence of MILP.

5 CONCLUSIONS

In order to exploit regularities in road traffic patterns and avoid expensive opti-
mization techniques, TRAMESINO stands out as a good candidate for efficient
traffic control. The system exploits the causal relation among action - conse-
quences pairs (i.e. traffic light green time - flow of cars) in time in order to
store relevant contexts. Such traffic context memories are subsequently recalled
in new situations, but similar, traffic situations bypassing a new traffic plan
re-computation. Our experiments on real-world data demonstrate that such an
approach provides a good trade-off between accuracy and robustness overcom-
ing the static plans heuristics and the expensive optimization through a superior
gain in run-time. This behavior benefits from the rather deterministic daily traf-
fic profile but, as our experiments demonstrate, can also accommodate sudden
disruptions of increasing magnitudes.
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