®

Check for
updates

Available online at www.sciencedirect.com

ScienceDirect

Cognitive Systems
*v, RESERRCH___

r‘— G
ELSEVIER Cognitive Systems Research 50 (2018) 52-66

www.elsevier.com/locate/cogsys

Neuromorphic sensorimotor adaptation for robotic
mobile manipulation: From sensing to behaviour

a,b,x

. a o . a
Florian Mirus , Cristian Axenie”, Terrence C. Stewart, Jorg Conradt
Neuroscientific System Theory Group, Department of Electrical and Computer Engineering, Technical University of Munich, Arcisstrasse 21,
80333 Munich, Germany
® BMW Group EIE Architecture, Technologies, Parkring 19, 85748 Garching, Germany
¢ Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada

Received 31 March 2017; received in revised form 12 December 2017; accepted 12 March 2018
Available online 29 March 2018

Abstract

We propose a neuromorphic approach to perception, reasoning and motor control using Spiking Neural Networks in mobile robotics.
We demonstrate this by using a mobile robotic manipulator solving a pick-and-place task. All sensory data is provided by spike-based
silicon retina cameras - eDVS (embedded Dynamic Vision Sensor) - and all reasoning and motor control is implemented in Spiking Neu-
ral Networks. For the given scenario, the robot is capable of detecting a sequence of objects blinking at different frequencies, finding one
object that is not in the right place of the sequence, picking up this object and moving it to its correct position. Such a scenario demon-
strates how to build large-scale networks solving a high-level cognitive task by combining several smaller networks responsible for low-
level tasks. Importantly, here we focus only on generating a neural network that is capable of performing the task. This will be the basis
of future work using neural network learning algorithms to improve task performance. The long-term goal is to learn sophisticated beha-
viours by experience while at the same time being able to introduce expert knowledge for intermediate tasks that can be used to initialize
the network or to speed up the learning process.
© 2018 Elsevier B.V. All rights reserved.

Keywords: Mobile robotics; Spiking Neural Networks; Cognitive robotics; Neuromorphic sensing

1. Introduction

We propose a novel neural controller for a mobile
manipulator platform that can adapt its control policy
for grasping objects within a visual scene. In this paper,

* Corresponding author at: Neuroscientific System Theory Group
Department of Electrical and Computer Engineering, Technical Univer-
sity of Munich, Arcisstrasse 21, 80333 Munich, Germany.

E-mail addresses: florian.mirus@tum.de (F. Mirus), cristian.axenie@,
tum.de (C. Axenie), tcstewar@uwaterloo.ca (T.C. Stewart), conradt@tum.
de (J. Conradt).

URL: http://www.nst.ei.tum.de (J. Conradt).

https://doi.org/10.1016/j.cogsys.2018.03.006
1389-0417/© 2018 Elsevier B.V. All rights reserved.

we focus on a simplified pick and sort task. We use our
mobile robot to manipulate objects equipped with LED
stimuli (see Fig. 1) blinking at different frequencies with
one being out of the assumed order. The task is to place
the objects such that they are arranged by their blinking
frequencies in correct (descending) order. We propose a
system which uses a spiking neural substrate for represen-
tation and computation, that allows the system to approx-
imate sensorimotor correlations for both basic and
complex motion and grasping scenarios. Although sorting
is not an essential task for mobile robot manipulation,
we use it as a sample scenario for our approach to compu-
tation for flexible cognitive robotics. The simplified nature

https://doi.org/10.1016/j.cogsys.2018.03.006
mailto:florian.mirus@tum.de
mailto:cristian.axenie@ tum.de
mailto:cristian.axenie@ tum.de
mailto:tcstewar@uwaterloo.ca
mailto:conradt@tum.de
mailto:conradt@tum.de
http://www.nst.ei.tum.de
https://doi.org/10.1016/j.cogsys.2018.03.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cogsys.2018.03.006&domain=pdf

F. Mirus et al. | Cognitive Systems Research 50 (2018) 52—66 53

3-link Robotic arm
4 servo motor joints
load sensors
local position control

[Vision sensors

|+ spiking vision sensors
|+ local preprocessing

* asynchronous operation

Mobile platform

3-wheel omnidirectional drive
inertial sensors

odometry sensors

low-level data acquisition
low-level motion control

Blinking stimuli
» Programmable frequency

Fig. 1. Robotic platform.

of the task using objects with blinking LEDs, which are
easy to detect for event cameras, serves as a test case for
our approach of encoding sensory data, implementing per-
ception and motor mappings and dynamically behave in
noisy, uncertain environments using spiking neurons as a
computing framework. Constructing such a system entirely
with simulated neurons gives us two unique advantages.
First, the resulting system can be run on energy-efficient
neuromorphic hardware. Second, we can use the network
that we design here as the starting point for learning from
experience (as opposed to traditional neural network solu-
tions, which learn from a blank state). However, in order to
generate an initial functioning neural network model that
could be used to bootstrap learning, we need a way to pro-
gram such a network using something similar to traditional
engineering programming methods. That is the focus of
this paper. The proposed system describes a unified design
approach that links low-level sensorimotor data represen-
tation with high-level reasoning using a generic computa-
tional substrate.

1.1. Related work

Goal-directed movements represent an intermediate
level of behaviour that embodies both low-level motor exe-
cution and higher-level cognition (Krakauer & Mazzoni,
2011). The richness and variety of learned real-world motor
behaviours can be reduced to a small repertoire of tasks
that build up from the simple to the complex. Moreover,
controlling one’s body is the first prerequisite to successful
interaction with the environment. Even seemingly simple

goal-directed movements are learned. To enable the acqui-
sition, as well as the continuous adaptation of behaviour to
changing environmental constraints, modular hierarchical
control architectures appear necessary (Butz, Herbort, &
Hoffmann, 2007). Looking at neural systems, a decision
for an action emerges from competition between different
movement plans, which are specified and selected in paral-
lel. One particular implementation of action selection in
spiking neurons is the model of the Basal Ganglia in
Stewart, Choo, and Eliasmith (2010). For action choices
which are based on ambiguous sensory input, neural net-
works responsible for processing encode alternative spatial
motor goals in parallel during movement planning, and
show signatures of competitive value-based selection
among these goals (Klaes, Schneegans, Schner, & Galil,
2012). In such a context, the development of sensorimotor
behaviours has been investigated in robotic systems
towards analysing behaviour formation, learning and imi-
tation (Ugur, Nagai, Sahin, & Oztop, 2015). In a first stage,
the robot is initialized with a basic movement capability,
and discovers a set of behaviour primitives by exploring
its movement parameter space. In the next stage, the robot
exercises the discovered behaviours on different objects,
and learns the caused effects; effectively building a library
of affordances (Gibson et al., 1966) and associated condi-
tions (i.e. predictors). Finally, in the third stage, the learned
structures are used for more complex environment interac-
tions. While most sensorimotor behaviours are manually
engineered, there are attempts to learn more sophisticated,
complex behaviours from simpler basic movements
(Conradt, Galluppi, & Stewart, 2015; Stewart, Mundy,

54 F. Mirus et al. | Cognitive Systems Research 50 (2018) 52-66

Kleinhans, & Conradt, 2016). These basic maneuvers are
still manually engineered relating sensory cues to simple
movements like driving forward with no obstacle in the
sensors field of view, turning with an obstacle in front of
the robot or driving backwards when being close to an
obstacle. In Conradt et al. (2015) the authors describe a
method of learning more sophisticated behaviours from
recorded sensorimotor data obtained from driving the
robot by remote control as training examples, which can
be considered as a supervised learning approach. In
Stewart et al. (2016) the training examples are taken from
recording data of the robot driving around without human
interference and just labeling those situations as positive
examples when the robot performed the desired action by
accident, which can be considered as reinforcement learn-
ing. Both approaches are implemented on a small robot
with the DVS (Dynamic Vision Sensor) (Lichtsteiner,
Posch, & Delbruck, 2008) as sensory input using Nengo
(Neural Engineering Objects) (Bekolay et al., 2014) and
the NEF (Neural Engineering Framework) (Eliasmith &
Anderson, 2003) as well as its interface for running neural
networks models on the SpiNNaker (Spiking Neural Net-
work Architecture) hardware (Furber, Galluppi, Temple,
& Plana, 2014). Such models inherently support learning
through the neural processing substrate offered by NEF.
In a similar work (Andry, Gaussier, Nadel, &
Hirsbrunner, 2004) used a model of a visuo-motor map
able to represent the arm end point’s position in an ego-
centred space (constrained by the vision) according to
motor information (the proprioception). Sensorimotor
behaviours such as tracking, pointing, and sequence learn-
ing were then obtained as the consequence of different
internal dynamics computed on a neural network triggered
by the visuomotor map. This research landscape focuses on
learning patterns either in the perceptual space of the agent
or in its action space. Such a system allows the agent to
autonomously build a set of discrete steps for explaining
its interactions. The system is incremental in the sense that
it does not need to keep a record of the complete interac-
tion with the environment. This can be achieved by focus-
ing the search for recurring patterns around change points
in the sensorimotor signal (Mohammad et al., 2013). In
such a context, policy search methods allow robots to learn
control policies for a wide range of tasks, but practical
applications of policy search often require hand-
engineered components for perception, state estimation,
and low-level control. Training the perception and control
systems jointly end-to-end (Levine, Finn, Darrell, &
Abbeel, 2016) developed a method that can be used to
learn policies that map raw image observations directly
to torques at the robot’s motors in a real-world manipula-
tion task. The policies were represented by deep convolu-
tional neural networks trained with supervision provided
by a simple trajectory-centric reinforcement learning
method.

We consider our work as part of the neuromorphic engi-
neering and cognitive modelling research landscape. In this

context, researchers developed computational models of
particular brain parts (Oess, Krichmar, & Ro&hrbein,
2017) or drew inspiration from rats’ cognitive capabilities
(Barrera & Weitzenfeld, 2008) to tackle different problems
in robot navigation. Others combine biologically inspired
algorithms with neuromorphic hardware in closed-loop
robotics systems using e.g. the principle of the NEF
(Galluppi et al., 2014) or deep learning (Hwu, Isbell,
Oros, & Krichmar, 2017). We consider our work somewhat
in the middle: we use biologically inspired principles to
implement a specific task in simulated neurons using the
NEF on real robot hardware. Although our approach
allows future deployment on neuromorphic hardware, a
closed-loop neuromorphic system is not our focus in this
work. However, to our knowledge, this paper is the first
work to implement mobile robot manipulation completely
in Spiking Neural Networks and to demonstrate it on real
robot hardware.

2. Materials and methods
2.1. Hardware setup: OmniArmBot

The mobile manipulator used in this project is com-
prised of a custom developed omni-directional mobile plat-
form, depicted in Fig. 1, with embedded low-level motor
control and elementary sensory acquisition. The on-board
ARMY7 micro-controller receives desired motion com-
mands and continuously adapts three PID motor control
signals to achieve desired velocities. The robot’s integrated
sensors include wheel encoders for estimating odometry, a
9 degrees of freedom IMU (Inertial Measurement Unit), a
bump-sensor ring which triggers binary contact switches,
upon contact with objects in the environment and three sil-
icon retinas providing visual sensor input. Two of these
cameras are fixed on the mobile base, while one retina is
attached to the end-effector to monitor the workspace of
the robotic arm. The silicon retinas are eDVS
(Lichtsteiner et al., 2008) and provide discrete events as
response to temporal contrast. All 128 x 128 pixels of the
DVS operate asynchronously and illumination changes
are signalled within a few microseconds after occurrence
(without having to wait for a frame to send information).
Such information is communicated through spikes, repre-
senting a quantized change of log intensity at a particular
location. The mobile platform is equipped with a 6-axis
robotic arm with a working space between 10 cm and 41
cm. The robotic arm is composed of a set of links connected
together by revolute joints and has a lifting weight force up
to 800 g. The mobile platform contains an on-board battery
of 12 V @ 30 Ah; thereby providing a total of 360 W, which
allows autonomous operation for well above 5 h.

2.2. Software setup

The overall software architecture is based on a modular
design allowing the extension of the current sensorimotor

F. Mirus et al. | Cognitive Systems Research 50 (2018) 52—66 55

capabilities of the robotic platform by adding more sensors
and actuators. The software architecture is comprised of an
embedded sensorimotor platform running on-board the
robot and a neurocomputing platform suitable to run on
various computing backends like CPU (Central Processing
Unit), GPU (Graphics Processing Unit) and NPU (Neuro-
morphic Processing Unit), as shown in Fig. 2. The embed-
ded platform is responsible for the low-level sensory
perception, low-level motor control, and the bi-
directional communication (i.e. outgoing data streaming
and incoming commands) with the neurocomputing plat-
form. Decoupling low-level sensorimotor control from
the high level behaviour, the neurocomputing platform
offers a generic interface to implement neurocontrol algo-
rithms. This is achieved by separating the representation
of the sensorimotor streams, the transformation to be
applied to these streams and the actual dynamics of the
algorithm. Using such a decoupling and a high-level
description of the task, the neurocomputing platform acts
as a neural compiler. Such a neural compiler is able to
encode real-world sensorimotor streams in spiking activity
over populations of neurons. This representation is able to
support efficient computation, when deployed on dedicated
hardware, as well as learning needed in closed-loop robotic
applications, where data uncertainty, noise and unstruc-
tured environments require adaptive behaviour. Support-
ing intrinsically parallelizable processing mechanisms (i.e.
neural networks), the neurocomputing platform can accel-
erate computation by natively mapping the neural con-
troller on parallel computing hardware.

/Embedded Robotic Platform \
Mobile manipulator

Sensors
inertial
odometry
vision
joint load

Actuators
omniwheels
servo joints
gripper

WiFi

Data acquisition, control and
communication interface

connection

2.2.1. NEFI/Nengo enabled neurocontrol

Nengo (Bekolay et al., 2014) is a Python library for
building and simulating large-scale brain models using
the methods of the NEF (Eliasmith & Anderson, 2003).
Nengo can create sophisticated neural simulations for
real-time closed loop robotic systems and is at the core of
our neurocomputing platform. Nengo acts as a neural
compiler using three main principles: representation, trans-
formation and dynamics. For the first principle, represen-
tation, Nengo uses a distributed, non-linear encoding of
continuous signals to represent them in the spiking activity
over populations of neurons. Second, the neural popula-
tions encoding such values can have connections weights
that allow them to approximate an arbitrary function of
the inputs, which is referred to as the transformation prin-
ciple. Finally, recurrent connections among the encoding
populations allow the definition of complex dynamical
models - the dynamics principle. Further details on the
principles and workings of the NEF and its implementa-
tion in Nengo can be found in Eliasmith and Anderson
(2003), Eliasmith et al. (2012) and Bekolay et al. (2014).

Our overall goal is to develop robotic control systems
that are programmable and, at the same time, implemented
as neural networks. We want them to be programmable so
that we can leverage expert knowledge about the steps
required to perform a task. We want them to be imple-
mented as neural networks partly so that we can make
use of energy-efficient neuromorphic hardware, but mostly
because neural networks allow for gradual improvement of
task performance via learning. However, neural networks

~

Neurocomputing Platform
Neural compiler

Spike-based
representation
and
computation

Real-valued
sensorimotor
streams

Motor neurons
spikes @
ni . oe®

(

Wi i
wiri 1 ®

processing
algorithm

Processing
back-end

Fig. 2. Generic architecture: embedded robotic platform and neurocomputing platform.

56 F. Mirus et al. | Cognitive Systems Research 50 (2018) 52-66

on their own generally start with zero knowledge (random
connection weights) and can often take a long time to
learn, or completely fail to learn complex tasks. What we
thus need is a method for taking a complex algorithm
(i.e. the program we want to implement) and breaking it
down into smaller components. Each of those components
can then be implemented in a neural network. These indi-
vidual neural networks can then be combined into one
large neural network that can perform the entire task. This
final network can then be implemented in neuromorphic
hardware, and it could also be used as the starting point
for further learning. Crucially, it should be noted that we
are not trying to implement a perfect version of a task.
Rather, we want to program a somewhat competent, initial
version of a task that could then be further refined using a
variety of neural network learning algorithms. In particular
Duan, Chen, Houthooft, Schulman, and Abbeel (2016),
provide a comprehensive survey of Deep Reinforcement
Learning algorithms that are suitable for robotic control
learning. Most of these algorithms are based around
adjusting the connection weights of a neural network in
order to improve performance on a task, based on occa-
sional positive and negative reward values. Our long-term
research goal is to apply these learning systems to the pro-
grammed neural networks that we describe in this paper.

2.2.2. Building algorithms with neural networks and Nengo

First, we start with the principle that a neural network is
a function approximator. That is, a neural network takes in
a real-valued input x (which may be multidimensional) and
generates a real-valued output y (which may also be multi-
dimensional). When we train a neural network, we gener-
ally provide it with a set of input-output pairs (i.e. a set
of input values x; and a corresponding set of output values
¥;). This can be thought of as an implicit description of a
function f, such that we desire y = f(x). This standard
depiction of a neural network is shown in Fig. 3a, with a
3-dimensional input x and a 2-dimensional output y. In

y=/(x)

v
v
[-
A »
7 7]
2 N i
v

P

(a)

order to build larger systems with more complex algo-
rithms, we can combine multiple networks together. For
example, Fig. 4a shows a system where we not only have
v = f(x), but we also have z = g(w), and our final output
is a function of the outputs of both of the other two net-
works, m = h(y,z). By creating networks to compute these
intermediate functions and then combining them together,
we can implement complex computations. One crucial
question, however, is what advantage do we get by break-
ing this complex function down into smaller, simpler func-
tions? After all, it would have been possible to just make
one single network that directly approximates the desired
function, as shown in Fig. 4b. The primary reason not to
combine functions together, as in Fig. 4b, is that of scaling.
As algorithms become more complex, it becomes harder
and harder for neural networks to approximate them.
The traditional solutions are to either increase the number
of neurons in the middle layer, or to add more layers. Both
of these approaches make it harder for the learning algo-
rithms to find the connection weights that best approxi-
mate the function, and make the network require more
neurons, and thus more computational resources are
needed. Importantly, one can think of Fig. 4a as the result
of starting with Fig. 4b, adding in more hidden layers, and
adjusting the connectivity. In other words, by building a
complex network out of smaller networks, we are imposing
structure on the network. We are specifically indicating
that y and z are useful intermediate results that the network
should find as an intermediate step before computing m. If
we, as programmers, are correct in our decisions about this
intermediate structure, then we can greatly simplify the
process of creating these networks.

This approach to building large systems of neural net-
works out of smaller networks is the basis of the NEF
(Eliasmith & Anderson, 2003) and the software toolkit
Nengo (Bekolay et al., 2014). It has been applied to a wide
variety of tasks and works for both spiking and non-spiking
neuron models. Importantly, its ability to scale to large

yofx)

7
A .(-"' v
v 7 -
A 4 el
v
a)

dx/dt=(f(x)-x)/x
(b)

Fig. 3. (a) A simple neural network with a 3-dimensional input x and a 2-dimensional output y. By adjusting the connection weights between the layers,
the network can approximate a desired function y = f(x). (b) shows a similar network approximating a differential equation by using recurrent

connections.

F. Mirus et al. | Cognitive Systems Research 50 (2018) 52—66 57

W \‘ / z
z=g(w)
m=nh(fix), g(w))
(a)

m=h(f(x), g(w))

m AN

1
1 ' “m

)4,

w

(b)

Fig. 4. Two neural networks computing a complex function m = A(f(x),g(w)). (a) shows a combined network computing m = h(f(x),g(w)) while the

network in (b) computes the function directly.

complex systems allowed it to be the basis of the creation of
Spaun, the first large-scale brain simulation capable of per-
forming multiple behavioural tasks (Eliasmith et al., 2012).
Finally, it should be noted that Nengo and the NEF also
support recurrent connections. In particular, (Eliasmith &
Anderson, 2003) show that by adding in a model of the
post-synaptic filter (a low-pass filter observed in biological
systems and implemented in most neuromorphic hardware),
we can use a recurrent connection to cause the neural net-
work to approximate a differential equation. As shown in
Fig. 3b, if we create a network that approximates
v = f(x) and connect its output back to itself via a low-
pass filter with a time constant 7, then we will generate a
recurrent neural network that approximates the differential
)—x

equation Ox/0t = ﬂ% Given these tools, we can use
Nengo to construct large neural networks by combining
and linking smaller ones. In order to do this, we have to take
our desired algorithm and break it into small parts to be
implemented in sub-networks, each of which is a function
computed on an input vector or a differential equation.

2.2.3. Interface infrastructure

The interface between the embedded platform and the
neurocomputing platform is designed to abstract the ele-
mentary data acquisition and control. It encapsulates them
in spiking neural activity of neuron populations that repre-
sent sensory data or generate motor commands as provided
by Nengo. Such an interface allows the neurocomputing
platform to natively operate on either real-valued encod-

ings of the sensory data and motor commands or their
spike based representations.

3. Neural algorithm implementation in Nengo

Even the simplest behaviours are exploiting relations
(i.e. functions) between sensory streams and motor com-
mands. In order to design a neural controller able to adap-
tively switch control policies it is essential to extract such
functions in a reliable way, given the variability and uncer-
tainty in the sensorimotor streams. The relatively complex
and nonlinear interactions among the sensors on the robot
and its actuators, make the derivation of analytical forms
of such functions hard. Alleviating the need for such pre-
cise and task-dependent modelling, neural networks are
able to approximate such functions just from observations
of the available sensorimotor streams. In general, adaptive
behaviour is regarded as autonomous when the actions per-
formed by the agent result from the interaction between its
internal dynamics and the environment. Following such a
perspective, our system is able to incrementally build up
complex behaviours by superimposing more simple, basic
behaviours.

In the current instantiation of our framework, we want
to solve a non-trivial mobile manipulation task. Using our
mobile platform the task is to manipulate objects with
LED stimuli blinking at different frequencies to bring them
in order. More precisely, the task can be seen as a grasp
and sort task, in which the robot will select a certain con-

58 F. Mirus et al. | Cognitive Systems Research 50 (2018) 52-66

trol policy depending on the current sensory streams
(mainly visual input) to find the misplaced stimulus and
place it in the correct location. The main sensory input to
our system is visual information detected by two eDVS
mounted on top of the base and one eDVS attached to
the end-effector of the robot’s arm. We use an existing algo-
rithm (Miiller et al., 2011), which runs on-board of the
eDVS’s micro-controller, to track several LED-markers
blinking at different frequencies. Therefore, we only need
to send the output data of the tracking algorithm, namely
x, y-position, radius and certainty for each tracked stimu-
lus, via WiFi to the neurocomputing platform instead of
three 128 x 128 event-streams. The tracking result (posi-
tion and radius) is obtained by counting DVS-events over
a certain time-window (see Miiller et al., 2011 for details),
while the percentage of events within the track-radius
serves as a measure of certainty. Action selection is per-
formed using a model of a biologically plausible neural cir-
cuit, namely the Basal Ganglia. The Basal Ganglia,
according to Stewart et al. (2010), is an action selector that
chooses whatever action has the best “salience” or “good-
ness”. Selection is done on the basis of a context dependent
utility signal for each possible action. Actions that are
inappropriate for the current context may have low utility,
and the task of the Basal Ganglia is to select the action that
currently has the highest utility value. The Basal Ganglia
will choose between the four possible behaviour stacks:
Grab, Hold And Move Side, Put Down or Finish. We
design our control network by defining a set of
intermediate-level networks, namely Grab (see 3.2.2), Hold
And Move Side (see 3.2.3), Put Down (see 3.2.4) and Finish
(see 3.2.5) that are composed of various different low-level
behaviours, and then we create a high-level network (see
3.2.6) whose outputs activate and deactivate the low-level
networks. To accomplish this, each of the low-level net-
works will have an input ¢ which indicates its level of acti-
vation. If a is 0 then the output from that network should
be 0, and if @ is 1 then it should perform its basic activity. It
should be noted that this sort of control system design is
strongly reminiscent of the classic subsumption architec-
ture (Brooks, 1986). All behaviours are implemented in
the software suite Nengo, which is used to translate our
functional descriptions to spiking neuron representations
and to combine all sub-task networks to one large network
able to solve the whole task.

3.1. Perception and motor-control: low-level “‘reflex”
behaviours

3.1.1. Orient left/right using all cameras

This behaviour uses the x-position location of the target
in all three camera views to control the rotation of the
robot base. If the object is on the left, it turns left, and if
it is on the right, it turns right. This should cause the robot
to turn to face the object. If it cannot see the object, it does
nothing. If the object cannot be seen by a particular cam-
era, it does not contribute.

3.1.2. Orient left/right using arm camera only

This behaviour is similar to 3.1.1 in the sense that it con-
trols the rotation of the robot base. Here, instead of using
both base cameras, we use the arm retina to detect the tar-
get. This is meant to be used when the arm is already in
grasping position (cf. behaviour 3.1.4 and Fig. 14b) so that
the arm camera has a good view of the target, allowing for
a more fine-grained close-up control than behaviour 3.1.1
to move the gripper to the correct place for grasping the
target (cf. Fig. 14c¢).

3.1.3. Move forwardlbackward to grasping distance

Here, we use an approximation of binocular disparity
(i.e. the difference between x-values in the image of the left
and right base retina) to estimate the distance of the robot
base to the object in order to control whether we should
move forward or backward. This behaviour will output 0
if the object is not mostly in front of the robot (as com-
puted by averaging the x positions in the left and right
camera). If it is in front of the robot, then we move forward
or backward to achieve the desired distance, which is an
adjustable parameter.

3.1.4. Move arm to grasping position
This behaviour moves the arm from its resting position
to a position suitable for grasping (Fig. 14b).

3.1.5. Move backwards
This behaviour causes the robot base to move
backwards.

3.1.6. Close grip
This simply closes the gripper.

3.1.7. Move sidewards

This behaviour moves the robot base sidewards towards
a goal position and rotates the base to keep the goal posi-
tion in the middle of the field of view of the robot. We
make use of the target positions of the neighbouring
objects (cf. Out of Order Network 3.2.1), where the middle
between them is the goal position of this behaviour.

3.1.8. Move arm to put-down position

This behaviour simply moves the arm from its holding
position to a position suitable for putting down the object
again.

3.2. Reasoning: high-level “‘cognitive” behaviours

3.2.1. Out of order network

This network computes the object to manipulate and
serves as basis for all following behaviours built on top
of it. Fig. 5 gives a schematic visualization of the network
and its individual components. Assuming the objects’
blinking frequencies are given in descending order, this net-
work detects if one frequency does not fit the assumed
order by calculating the pairwise difference between x-

F. Mirus et al. | Cognitive Systems Research 50 (2018) 52—66 59

Evidence '
left

OutOfOrder

Evidence
right

Fig. 5. Schematic visualization of the Out of Order network 3.2.1, which detects if one frequency does not fit the assumed order as target and keeps this
objects information in memory. Sets of white circles indicate neural populations while boxes indicate sub-networks. The x-values ensemble encodes x-
positions of stimuli in DVS-image, the diff ensemble encodes pairwise differences between x-positions, the negative-min ensemble indicates if the minimal
difference is negative, odd encodes the frequency, which is out of order (inhibited by negative min when all differences are positive), the evidence networks
integrate evidence for the target object and the neighbour frequencies if in correct order.

positions in the DVS image. The objects are in order, if and
only if all pairwise differences are non-negative (in this
case, the negative min ensemble inhibits the odd ensemble,
visualized by a red arrow in Fig. 5), while otherwise at least
one object is out of place (cf. 5 neural ensembles x-values
and diff). The corresponding object is indicated as target
and its information is stored in memory (cf. Fig. 5 neural
ensemble odd and sub-network evidence). Furthermore,
the network detects those frequencies, which should be
the neighbours of our detected target if in correct order
and keeps their information in memory as well (cf. Fig. 5
neural ensembles left/right and sub-networks evidence
left/right). Memory in the evidence sub-networks is real-
ized as dynamical system (cf. principle dynamics in Sec-
tion 2.2.1 or (Bekolay et al., 2014; Eliasmith & Anderson,
2003)) with recurrent connections. Thereby, the networks
integrate evidence and keep the desired information avail-
able even in the absence of sensory input until a forget
mechanism is triggered (cf. forget-node in Fig. 5). This
mechanism can be triggered manually by the user or auto-
matically by another network.

Fig. 6 shows an example of actual DVS input data from
the embedded tracking algorithm as well as the decoded
output of the networks subcomponents activity: during
the first 5 s the stimuli are in correct descending order from
left to right in the DVS-image (Fig. 6a), so the minimum
pairwise difference is non-negative (Fig. 6b and c). In the
interval 5-15 s, the 250 Hz stimulus is put between the
150 Hz and 200 Hz stimuli, so now the sequence is out of
order and the 250 Hz frequency is detected by the odd
ensemble (Fig. 6d) while the evidence networks integrate
accordingly (Fig. 6f-h). Starting from around 15 s the

250 Hz and 350 Hz stimuli are interchanged and the net-
work’s outputs change accordingly (Fig. 6a-d). However,
the evidence networks - as desired - still keep the informa-
tion about the old target until a forget mechanism (Fig. 6¢)
is triggered in the interval 20-25 s allowing the evidence
networks to recover for new input (Fig. 6f-h).

3.2.2. Perform grasping action

This is a high-level behaviour that uses the low-level
behaviours described in Section 3.1 to find and grasp the
desired object. As long as the object is not visible in both
base cameras, the robot moves backwards (behaviour
3.1.5). As soon as the robot reliably detects the object in
both base cameras, the base moves forward (and backward
if necessary) using behaviour 3.1.3 and moves the arm in
the correct position for grasping (behaviour 3.1.4). If the
robot can see the object with the arm camera, then it uses
the arm camera for orientation (behaviour 3.1.2), otherwise
it uses all three (behaviour 3.1.1). Also, if the robot can’t
see the object with the arm camera, then it backs up (beha-
viour 3.1.5). Note that behaviour 3.1.5 and behaviour 3.1.3
both move the robot forward and backward, so when they
are both active the robot will end up achieving a position
farther away from the object than when just behaviour
3.1.3 is active (the motor commands are summed). This
positions the robot such that it is at the right distance for
grasping. Finally, once the robot is at the correct distance
from the object and right in front of it, then it closes the
gripper. This combination of actions serves to successfully
grab the object. Fig. 7 gives a schematic visualization of
this network while Fig. 8 shows the activation levels of
the high- and low-level behaviours (Fig. 8a and b) as well

60 F. Mirus et al. | Cognitive Systems Research 50 (2018) 52-66

Out of Order Network

10 a) x-positions of stimuli in DVS image e) forget-node for evidence networks
05 5 — 400 Hz [l ;;’
: 7&’;: — 3momzf] ©
0.0 — 250Hz|| °¢
\ — 200 Hz o4
93 — 150 Hz e
10 0.0
b) pairwise difference of x-positions 12 f) evidence for target object
0® Y' — diff(350,400) 10/[— 400 Hz
0.4 — diff(250,350) H 08| — 350 Hz
0.2 — — diff(200,250) 06| — 250Hz
o0 — diff(150,200) [| o04|| — 200 Hz /
0.2{| — 150 Hz
-0.2
0.0 L
c) negative minimum ensemble 12 g) evidence for left neighbour object
L0 10| — 400 Hz
0.8 08| — 350 Hz
- 06)| — 250 Hz
z: 0.4}| — 200 Hz
00 A 0.2 150 H7
0.0
08 d) most odd object based on pairwise difference 12 h) evid/ence for right neighbour object
bt — 400 Hz 10{| — 400 Hz
0.5 — 350 Hz |} 08f| — 350 Hz
e — 250Hz|| o6l — 250Hz
0.2 — 200 Hz [04| — 200 Hz
gék ‘ — 150 Hz 02| — 150 Hz
~015 5 10 15 20 25 E 5I 10 15 20 25 30
time (s) time (s)

Fig. 6. Decoded output of the Out of Order network’s 3.2.1 neural components based on DVS input data from embedded tracking.

TaskGrab

Behaviours

OrientLR

Target info

Fig. 7. Schematic visualization of the TaskGrab network 3.2.2, which finds an object and grabs it. Sets of white circles indicate neural populations while
boxes indicate sub-networks. The TargetInfo ensemble encodes sensory information (x- and y-position in the image, as well as radius and track-certainty
for each DVS) of the target object (coming from the evidence sub-network in the out of order network), which serves as input for the low-level behaviours.
For detailed descriptions of those, see Section 3.1. The has-grabbed ensemble keeps the information once the object was grabbed in memory to indicate
this task finished successfully.

as the sensory information the behaviours make use of, 3.2.3. Hold object and move to goal position

namely tracking certainty and disparity and x-position of This behaviour combines holding an object by keeping
the target object in the arm retina (Fig. 8 and d the gripper closed while moving to the goal position at
respectively). the same time. Here, we make use of the stored information

F. Mirus et al. | Cognitive Systems Research 50 (2018) 52—66 61

Grab Network
a) activation levels of high-level behaviours and gripper-state

1.0 — grab K
05 /Xf — hold_and_side
0.0 — put_down

-0.5 — finish
-1.0 — has_grabbed
-15
12 b) activation levels of low-level behaviours
1.0 | — orientLR &
08 — orientFB
2:2 — arm_orientLR
. — move_back
0.0 — grip -
-0.2 — move_side [
1.0 c) certainties of target object

v

d) x-positions of target object

time (s)

Fig. 8. Decoded output of the Grab network’s 3.2.2 neural components.

HoldAndMoveSide

MoveSidewards

Left target
info

Reached
position

target info

Fig. 9. Schematic visualization of the HoldAndMoveSide network 3.2.3, which holds the object while approaching the goal position for putting down the
target object. Sets of white circles indicate neural populations while boxes indicate sub-networks. The Left/Right TargetInfo ensembles encode sensory
information (x- and y-position in the image, as well as radius and track-certainty for each DVS) of the neighbour objects (coming from the left/right
evidence networks in the out of order network), which serves as input for the low-level behaviours. The MoveSidewards behaviour 3.1.7 uses the mean
value of the lateral positions of the left resp. right neighbour in the left resp. right base camera as an estimation of the middle between the neighbour
objects and moves the base to this position, while the Grip behaviour 3.1.6 keeps the gripper closed. The Reached position ensemble serves as a memory
integrating evidence once the goal position is reached to indicate that this subtasks finished successfully.

about the target object’s neighbours to calculate the goal and the right neighbour in the right base camera as an esti-
position. Therefore, we use the mean value of the lateral ~ mation of the middle between the neighbour objects, which
positions of the left neighbour in the left base camera is where we want to place our target object. This value is

62 F. Mirus et al. | Cognitive Systems Research 50 (2018) 52-66

Hold and Move Side Network

1.5

a) activation levels of high-level behaviours and goal-position state

1.0 — grab H
05 1//</Z/ — hold_and_side
0.0 — put_down H
-0.5 — finish
-1.0 — reached_pos
-15
10 b) certainties of target object
0.8 — lc Y
0.6 — rc
0.4 — ac
0.2
0.0 e
-0.2
10 c) x-positions of left/right neighbour objects in resp. cameras
0.8 — leftIx
0.6 — right rx
0.4
0.2
0.0
-0.2
-0.4
1.0 d) certainties of left/right neighbour objects in resp. cameras
0.8 — leftlc
0.6 — right rc
0.4
0.2
0.0
02 26 28 30 32 34 36 38 40 42

time (s)

Fig. 10. Decoded output of the Hold and Move Side network’s 3.2.3 neural components.

used to control sidewards and rotation motion of the base
to navigate the robot to the correct position for putting
down the target object (see Fig. 10c in the interval from
28 s to 37 s). Fig. 9 gives a schematic visualization of this
network. Fig. 10 shows the activation levels of the high-
and low-level behaviours.

3.2.4. Put object down

This behaviour simply moves the arm from its gripping
position to a position suitable for releasing an object, while
opening the gripper and moving the base slightly back-
wards at the same time to ensure smooth and safe place-
ment of the target object.

3.2.5. Finish task

This behaviour simply makes the robot base back off
from the manipulated objects. After stopping the base -
implicitly by deactivating all other behaviours - the arm
moves to back to resting position automatically, which
indicates that the whole sequence of tasks is completed.

3.2.6. Perform sorting task

This is a high-level behaviour combining all the other
behaviours described so far to complete the whole task of
moving the target object to its correct position in the
sequence of frequencies. Fig. 12 gives a schematic visualiza-
tion of the network. To choose the appropriate action to
take, we used models of the Basal Ganglia and Thalamus
(Stewart et al., 2010), which are available as pre-
implemented networks in Nengo. Corresponding to each
of the behaviours described so far in Section 3.2, we created

a neural ensemble encoding input values for the Basal
Ganglia network to choose from (cf. choice ensemble in
Fig. 12). This ensemble represents the current state of the
sub-networks, namely the evidence value indicating each
network’s level of success (namely the has grabbed ensemble
in Fig. 7, the reached position ensemble in Fig. 9 and the
finished ensemble in Fig. 11). Depending on the most salient

PutDown

finished
PutDownPosition

Fig. 11. Schematic visualization of the Put Object Down network 3.2.4,
which moves the arm from holding position to put-down position, opens
the gripper and moves the base slightly backwards to ensure smooth and
safe placement of the target object. Sets of white circles indicate neural
populations while boxes indicate sub-networks. The active ensemble
integrates evidence when this behaviour is initially activated, the
PutDownPosition behaviour 3.2.4 moves the arm to a position suitable
for releasing an object while the BackOff network activates the low-level
behaviour to move backwards 3.1.5. The finished ensemble integrates
evidence once the PutDown task is completed to indicate that this subtask
finished successfully.

F. Mirus et al. | Cognitive Systems Research 50 (2018) 52-66

TaskGrabAndSort

Behaviour
Activation

HoldAnd

MoveSide ALc

63

Fig. 12. Schematic visualization of the TaskGrabAndSort network 3.2.6. Sets of white circles indicate neural populations while boxes indicate sub-
networks. The boxes in the lower part visualize the subtask-networks (3.2.2-3.2.5), which are activated by the upper network chain for action selection

incorporating the Basal Ganglia and Thalamus networks pre-implemented in Nengo.

Grab and Sort Network
a) activation levels of high-level behaviours
1.0

—— grab i =
—— hold_and_side

0.51 —— put_down
—— finish

0.0

b) activation levels of low-level behaviours

1.0

T — arip 7 : —
—— move_side

0.5 put_down
—— finish

0.0 Lo

orientLR
orientFB
arm_orientLR
move_back

c) choice ensemble (state-variables for action-selection)

1 e

0 _//

—— task_activation
—— has_grabbed
—— reached_goal
—— finished

d) relevant sensor information of target object

ac
ax

NEN
a

1.0

0.5 e

M
em——

— leftIx
—— right rx

0 10 20 30 40 50
time (s)

Fig. 13. Decoded output of the TaskGrabAndSort network’s 3.2.6 neural components. This visualizes one example run of the complete task and shows

the interplay between high-level and low-level behaviours, state-variables for action-selection and sensory-data.

signal in the choice ensemble, the Basal Ganglia network
sends activation signals to the high-level behaviour sub-
networks (visualized with green' arrows in Fig. 12). Initially,
Perform Grasping Action (behaviour 3.2.2) is enabled. Once
the robot picked up the target object and built up sufficient
evidence, the Basal Ganglia network activates the behaviour

! For interpretation of color in Fig. 12, the reader is referred to the web
version of this article.

to hold the (target) object and navigate the robot to the goal
position (behaviour 3.2.3). As soon as the robot reached its
goal position between the neighbour objects and the accord-
ing network built sufficient evidence, the behaviour 3.2.4 to
put down the target object is activated. As soon as this beha-
viour is completed, the whole sequence is wrapped up by
activating the Finish behaviour 3.2.5.

Fig. 14 illustrates the most important stages of one
example run while Fig. 13 gives a visualization of the

64 F. Mirus et al. | Cognitive Systems Research 50 (2018) 52-66

decoded output of the networks components: once the Out
of Order network detected the target object (roughly the
first 5 s), the Grab behaviour is activated to find grasp
the target object (Fig. 14a—c, Fig. 13, 8-26 s). The different
low-level behaviours for orientation and navigation are
enabled based on the certainty and disparity of the tracked
stimuli (for details see Section 3.2 behaviour 3.2.2). Once
the robot grabbed the target object, the Basal Ganglia acti-
vates the Hold and Move Side behaviour 3.2.3 (Fig. 14d
and e, Fig. 13, 26-39 s). A clear indicator for successful
pick-up is the decrease of certainty (cf. Section 3) in the
base-retinas (cf. values of Ic and rc around 30 s in
Fig. 13d and Fig. 14d and e), which means that the target
object is no longer visible in the base retinas. The main sen-
sory input in this phase is the x-position of the neighbour
objects (Fig. 13e) with the robot aiming for the middle
between the two. Once the robot reached its goal position
between the neighbouring objects, the Put Down behaviour
3.2.4 is activated (Fig. 14f and g). Finally the whole task is
wrapped up by the Finish behaviour 3.2.5 and all other

I

behaviours are deactivated (Fig. 14h) to put the robot back
into resting position.

4. Discussion

We have shown a mobile robotic manipulator capable of
solving a pick-and-place task, with algorithmic components
completely implemented in the framework of Spiking Neu-
ral Networks. In this work, we focused on task performance
only, i.e. our emphasis was on the generation of a network
that is capable of performing the pick and sort task with a
minimum of prior information and parametrization. We
aimed for a proof-of-concept implementation showing gen-
eral applicability of our approach: we intend to expand its
functionality with supervised and unsupervised learning
methods to improve task performance in future work. For
this reason, we omitted a detailed analysis of precision
regarding robot motion and grasping actions, which is not
our main concern here. Similarly, we did not extensively
investigate flexibility of our implementation in the sense,

Fig. 14. Selected stages of an example run of the Grab and Sort Task 3.2.6.

F. Mirus et al. | Cognitive Systems Research 50 (2018) 52—66 65

that our approach is currently unable to compensate for
faults on hardware level. However, the neural framework
and modular software architecture are intrinsically flexible
and allow extending the current implementation incremen-
tally with additional network components, either manually
designed or automatically learned.

Furthermore, the underlying Nengo-based neural com-
piler supports the use of dedicated neuromorphic hardware
systems, which allows to run even large-scale neural net-
works in real-time. The possibility to introduce learning
will eventually enable such systems to adapt their control
policies and decision making to unpredictable changes in
the environment. Furthermore, the neural implementation
is beneficial in terms of allowing to combine networks
hand-programmed by experts/engineers with learning net-
works that improve themselves over time with increasing
data/experience. Here, our ultimate goal is to design sys-
tems that are capable of adapting to new task during oper-
ation time while at the same time using experience from
previous tasks and expert knowledge.

4.1. Limitations

The current algorithmic implementation has some inher-
ent limitations. For now, the network is only able to detect
one object not fitting in the sequence of frequencies. To
overcome this limitation, the Out of Order network 3.2.1
could be enhanced to solve the sorting-problem in a neural
fashion. Another obvious limitation of the current imple-
mentation is the need for neighbour objects to find the goal
position for put-down. This makes it impossible to solve the
task for those objects blinking at a maximum or a minimum
frequency. As for the first limitation, the Out of Order net-
work needs to become more sophisticated to detect the goal
position in these edge-cases when a border-object needs to
be manipulated. One possibility could be to detect one
neighbour and to use the maximum of the pairwise differ-
ences as distance estimation for the offset.

4.2. Future work

Our short-term goal is to enhance the current implemen-
tation and to solve the technical limitations mentioned in
Section 4.1. A more intermediate topic for future work is
to adapt the current system for test runs on other comput-
ing backends to benchmark performance and runtime.
Nengo supports different simulation backends, for instance
GPUs (Bekolay et al., 2014) and dedicated neuromorphic
computing hardware like SpiNNaker (Furber et al., 2014;
Mundy, Knight, Stewart, & Furber, 2015). Apart from
these more technical issues, our long-term goal is to use
the current implementation as a starting point for self-
improving learning systems. As the current implementation
is built in the framework of Spiking Neural Network it sup-
ports different learning approaches, e.g. supervised
(MacNeil & Eliasmith, 2011), semi-supervised (Bekolay,
Kolbeck, & Eliasmith, 2013) and reinforcement learning

(Rasmussen & Eliasmith, 2014). One direction for future
research could be to use the current low-level behaviours
for initialization and to let the system learn and improve
them incrementally by experience. For instance, one prob-
lem in learning robotic systems, e.g. policy search for
motor control (Levine et al., 2016), is the acquisition of suf-
ficiently large training data sets. Recording large amounts
of training data by repeating one specific task with real
robotic systems is time-consuming and often infeasible,
while training-data from simulation is usually not realistic
enough to capture the complexity of noisy real-world data.
In these cases, a system which is able to use expert-
knowledge for certain (sub-) tasks as a starting point could
significantly speed-up the learning process. We believe that
our current approach is a promising first step for further
research in this direction.

Acknowledgement

This work was partly supported by the Bavarian
Research Alliance, which awarded a BayIntAn Fellowship
for fostering collaborations with CNRG, University of
Waterloo.

Appendix A. Supplementary material

Supplementary data associated with this article can be
found, in the online version, at https://doi.org/10.1016/j.
cogsys.2018.03.006.

References

Andry, P., Gaussier, P., Nadel, J., & Hirsbrunner, B. (2004). Learning
invariant sensorimotor behaviors: A developmental approach to
imitation mechanisms. Adaptive Behavior, 12(2), 117-140. https://doi.
org/10.1177/105971230401200203.

Barrera, A., & Weitzenfeld, A. (2008). Biologically-inspired robot spatial
cognition based on rat neurophysiological studies. Autonomous
Robots, 25(1), 147-169. https://doi.org/10.1007/s10514-007-9074-3.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C.,
Rasmussen, D., ... Eliasmith, C. (2014). Nengo: A Python tool for
building large-scale functional brain models. Frontiers in Neuroinfor-
matics, 7(48). https://doi.org/10.3389/fninf.2013.00048<http://www.
frontiersin.org/neuroinformatics/10.3389/fninf.2013.00048/abstract> .

Bekolay, T., Kolbeck, C., & Eliasmith, C. (2013). Simultaneous unsuper-
vised and supervised learning of cognitive functions in biologically
plausible spiking neural networks. In 35th Annual conference of the
Cognitive Science Society (pp. 169-174). Cognitive Science Society.

Brooks, R. A. (1986). A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, 2(1), 14-23.

Butz, M. V., Herbort, O., & Hoffmann, J. (2007). Exploiting redundancy
for flexible behavior: Unsupervised learning in a modular sensorimotor
control architecture. Psychological Review, 114(4), 1015-1046.

Conradt, J., Galluppi, F., & Stewart, T. C. (2015). Trainable sensorimotor
mapping in a neuromorphic robot. Robotics and Autonomous Systems.
https://doi.org/10.1016/j.robot.2014.11.004.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P. (2016).
Benchmarking deep reinforcement learning for continuous control. In
Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016 (pp. 1329—
1338). <http://jmlr.org/proceedings/papers/v48/duan16.html>.

https://doi.org/10.1016/j.cogsys.2018.03.006
https://doi.org/10.1016/j.cogsys.2018.03.006
https://doi.org/10.1177/105971230401200203
https://doi.org/10.1177/105971230401200203
https://doi.org/10.1007/s10514-007-9074-3
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2013.00048/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2013.00048/abstract
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0020
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0020
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0020
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0020
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0020
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0025
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0025
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0025
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0030
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0030
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0030
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0030
https://doi.org/10.1016/j.robot.2014.11.004
http://jmlr.org/proceedings/papers/v48/duan16.html

66 F. Mirus et al. | Cognitive Systems Research 50 (2018) 52-66

Eliasmith, C., & Anderson, C. H. (2003). Neural engineering: Computa-
tion, representation, and dynamics in neurobiological systems. In
Computational neuroscience. Cambridge, Mass: MIT Press.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang,
Y., & Rasmussen, D. (2012). A large-scale model of the functioning
brain. Science, 338(6111), 1202-1205. https://doi.org/
10.1126/science.1225266<http://science.sciencemag.org/content/338/
6111/1202>.

Furber, S., Galluppi, F., Temple, S., & Plana, L. (2014). The SpiNNaker
project. Proceedings of the IEEE, 102(5), 652-665. https://doi.org/
10.1109/JPROC.2014.2304638.

Galluppi, F., Denk, C., Meiner, M. C., Stewart, T.C., Plana, L.A.,
Eliasmith, ..., Conradt, J. (2014). Event-based neural computing on an
autonomous mobile platform. In 2014 IEEE International Conference
on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31 -
June 7, 2014 (pp. 2862-2867). doi:https://doi.org/10.1109/ICRA.2014.
6907270.

Gibson, J. (1966). The senses considered as perceptual systems, Houghton
Mifflin. <https://books.google.de/books?id=JOROAAAAMAAJT>.
Hwu, T., Isbell, J., Oros, N., & Krichmar, J. (2017). A self-driving robot
using deep convolutional neural networks on neuromorphic hardware.
In 2017 International Joint Conference on Neural Networks (IJCNN)

(pp. 635-641). doi:https://doi.org/10.1109/TJICNN.2017.7965912.

Klaes, C., Schneegans, S., Schner, G., & Gail, A. (2012). Sensorimotor
learning bi-ases choice behavior: A learning neural?eld model for
decision making. PLOS Computational Biology, 8(11), 1-19. https://
doi.org/10.1371/journal.pcbi.1002774.

Krakauer, J. W., & Mazzoni, P. (2011). Human sensorimotor learning:
adaptation, skill, and beyond. Current Opinion in Neurology, 21(4),
636-644.

Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training
of deep visuomotor policies. Journal of Machine Learning Research, 17
(1), 1334-1373<http://dl.acm.org/citation.cfm?id=2946645.2946684>.

Lichtsteiner, P., Posch, C., & Delbruck, T. (2008). A 128x128 120 db 15 us
latency asynchronous temporal contrast vision sensor. IEEE Journal of
Solid-State Circuits, 43(2), 566-576. https://doi.org/10.1109/
JSSC.2007.914337.

MacNeil, D., & Eliasmith, C. (2011). Fine-tuning and the stability of
recurrent neural networks. PLOS ONE, 6(9), 1-16. https://doi.org/
10.1371/journal.pone.0022885.

Mohammad, Y. F. O., Nishida, T. (2013). Learning sensorimotor
concepts without reinforcement. In Lifelong machine learning, Papers
from the 2013 AAAI spring symposium, Palo Alto, California, USA,
March 25-27, 2013. <http://www.aaai.org/ocs/index.php/SSS/
SSS13/paper/view/5699>.

Miiller, G. & Conradt, J. (2011). A miniature low-power sensor system for
real time 2D visual tracking of LED markers. In Proceedings of the
IEEE international conference on robotics and biomimetics (IEEE-
ROBIO).

Mundy, A., Knight, J., Stewart, T., & Furber, S. (2015). An efficient
SpiNNaker implementation of the Neural Engineering Framework. In
2015 International Joint Conference on Neural Networks (IJCNN) (pp.
1-8). doi:https://doi.org/10.1109/IJCNN.2015.7280390.

Oess, T., Krichmar, J. L., & Rohrbein, F. (2017). A computational model
for spatial navigation based on reference frames in the hippocampus,
retrosplenial cortex, and posterior parietal cortex. Frontiers in Neuro-
robotics, 11, 4. https://doi.org/10.3389/fnbot.2017.00004<https://
www.frontiersin.org/article/10.3389/fnbot.2017.00004>.

Rasmussen, D., & Eliasmith, C. (2014). A neural model of hierarchical
reinforcement learning. In P. Bello, M. Guarini, M. McShane, & B.
Scassellati (Eds.), Proceedings of the 36th annual conference of the
Cognitive Science Society (pp. 1252-1257). Austin: Cognitive Science
Society<https://mindmodeling.org/cogsci2014/papers/221/index.html>.

Stewart, T. C., Choo, X., & Eliasmith, C. (2010). Dynamic behaviour of a
spiking model of action selection in the Basal Ganglia. In [0th
International conference on cognitive modeling.

Stewart, T. C., Mundy, A., Kleinhans, A., & Conradt, J. (2016). Serendip-
itous offline learning in a neuromorphic robot. Frontiers in Neuro-
robotics, 10(1). https://doi.org/10.3389/fnbot.2016.00001 <http://www.
frontiersin.org/neurorobotics/10.3389/fnbot.2016.00001/abstract>.

Ugur, E., Nagai, Y., Sahin, E., & Oztop, E. (2015). Staged development of
robot skills: Behavior formation, affordance learning and imitation
with motionese. /EEE Transactions on Autonomous Mental Develop-
ment, 7(2), 119-139. https://doi.org/10.1109/TAMD.2015.2426192.

http://refhub.elsevier.com/S1389-0417(17)30095-5/h0045
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0045
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0045
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0045
https://doi.org/10.1126/science.1225266
http://science.sciencemag.org/content/338/6111/1202
http://science.sciencemag.org/content/338/6111/1202
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/ICRA.2014.6907270
https://doi.org/10.1109/ICRA.2014.6907270
https://books.google.de/books?id=J9ROAAAAMAAJ
https://doi.org/10.1109/IJCNN.2017.7965912
https://doi.org/10.1371/journal.pcbi.1002774
https://doi.org/10.1371/journal.pcbi.1002774
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0080
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0080
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0080
http://refhub.elsevier.com/S1389-0417(17)30095-5/h0080
http://dl.acm.org/citation.cfm?id=2946645.2946684
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1371/journal.pone.0022885
https://doi.org/10.1371/journal.pone.0022885
http://www.aaai.org/ocs/index.php/SSS/SSS13/paper/view/5699
http://www.aaai.org/ocs/index.php/SSS/SSS13/paper/view/5699
https://doi.org/10.1109/IJCNN.2015.7280390
https://www.frontiersin.org/article/10.3389/fnbot.2017.00004
https://www.frontiersin.org/article/10.3389/fnbot.2017.00004
https://mindmodeling.org/cogsci2014/papers/221/index.html
https://doi.org/10.3389/fnbot.2016.00001
http://www.frontiersin.org/neurorobotics/10.3389/fnbot.2016.00001/abstract
http://www.frontiersin.org/neurorobotics/10.3389/fnbot.2016.00001/abstract
https://doi.org/10.1109/TAMD.2015.2426192

	Neuromorphic sensorimotor adaptation for robotic �mobile manipulation: From sensing to behaviour
	Introduction
	Related work

	Materials and methods
	Hardware setup: OmniArmBot
	Software setup
	NEF/Nengo enabled neurocontrol
	Building algorithms with neural networks and Nengo
	Interface infrastructure

	Neural algorithm implementation in Nengo
	Perception and motor-control: low-level “reflex” behaviours
	Orient left/right using all cameras
	Orient left/right using arm camera only
	Move forward/backward to grasping distance
	Move arm to grasping position
	Move backwards
	Close grip
	Move sidewards
	Move arm to put-down position

	Reasoning: high-level “cognitive” behaviours
	Out of order network
	Perform grasping action
	Hold object and move to goal position
	Put object down
	Finish task
	Perform sorting task

	Discussion
	Limitations
	Future work

	Acknowledgement
	Supplementary material
	Supplementary material
	References

