17 / June / 2019

Big Data and online
streaming machine
learning

Big Data, Fast Data, All Data

Dr. Cristian Axenie
Senior Research Engineer Al and ML

Al and ML in Big Data Team
IT Software Infrastructure Depit.

.

i onen S European &2 HUAWEI

HUAWEI] Center



Introducing the speaker

TUM PhD in
Neuroscience and Robotics,
Summa cum Laude

Academic Research

[ AUDI
AS Of2017 INGCOLSTADT
Technische Hochschule +7'
As of 2017 Ingolstadt
S
e®

Tm Y eesn
201 6_201 7 Canter of Compatance on Neuroengineanng

Teghn icgl
2011-2016 R

Industry Research

e

As of 2017 HUAWEI

2009-2011

WIND RIVER
2009-2011

2007-2008

V2 HUAWEI



(Dis)ambiguating Big Data
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Big Data in a Nutshell
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Big Data Stream Processing: A gentle introduction
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Big Data Stream Processing: A gentle introduction

Stream processing paradigm simplifies parallel software and hardware by restricting the parallel
computation that can be performed.

Given a sequence of data (a stream), a series of operations (functions) is applied to each element
in the stream, in a declarative way, we specify what we want to achieve and not how.
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Big Data Stream Learning: Why is it different?
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Big Data Stream Learning: Why is it different?

Big Data Stream Learning is more challenging than batch or offline learning, since the data

may not preserve the same distribution over the lifetime of the stream.
Moreover, each example coming in a stream can only be processed once, or needs to be
summarized with a small memory footprint, and the learning algorithms must be efficient.
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Big Data Stream Learning is more challenging than batch or offline learning, since the data
may not preserve the same distribution over the lifetime of the stream.
Moreover, each example coming in a stream can only be processed once, or needs to be

summarized with a small memory footprint, and the learning algorithms must be efficient.
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Big Data Stream Learning: Where' s the catch?
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Big Data Stream Learning: Where' s the catch?

In order to deal with evolving data streams, the model learnt from the streaming data must
capture up-to-date trends and transient patterns in the stream.

Updating the model by incorporating new examples, we must also eliminate the effects of
outdated examples representing outdated concepts through one-pass.
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In order to deal with evolving data streams, the model learnt from the streaming data must
capture up-to-date trends and transient patterns in the stream.

Updating the model by incorporating new examples, we must also eliminate the effects of
outdated examples representing outdated concepts through one-pass.
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Streaming Machine Learning Basics
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Elements of Streaming Machine Learning
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Elements of Streaming Machine Learning

Most strategies use variations of the sliding window technique: a window is maintained that
keeps the most recently read examples, and from which older examples are dropped

according to some set of rules.
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Elements of Streaming Machine Learning

Most strategies use variations of the sliding window technique: a window is maintained that
keeps the most recently read examples, and from which older examples are dropped

according to some set of rules.
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Elements of Streaming Machine Learning

The contents of the sliding window can be used for the three tasks:
1) to detect change (e.g., by using some statistical test on different sub-windows),
2) to obtain updated statistics / criteria from the recent examples, and
3) to have data to rebuild or update the model after data has changed.
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Elements of Streaming Machine Learning

The contents of the sliding window can be used for the three tasks:
1) to detect change (e.g., by using some statistical test on different sub-windows),
2) to obtain updated statistics / criteria from the recent examples, and
3) to have data to rebuild or update the model after data has changed.
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Elements of Streaming Machine Learning

Normally, the user is caught in a tradeoff without solution:

« a small size (so that the window reflects accurately the current distribution)

 a large size (so that many examples are available to work on, increasing accuracy in
periods of stability).
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Elements of Streaming Machine Learning

Normally, the user is caught in a tradeoff without solution:

« a small size (so that the window reflects accurately the current distribution)

 a large size (so that many examples are available to work on, increasing accuracy in
periods of stability).
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Elements of Streaming Machine Learning

Normally, the user is caught in a tradeoff without solution:

« a small size (so that the window reflects accurately the current distribution)

 a large size (so that many examples are available to work on, increasing accuracy in
periods of stability).
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Currently, it has been proposed to use windows of variable size.
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Streaming Machine Learning in Action
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Streaming Machine Learning |

Example use-cases Pollution GO

Urban Observatory project at

Newcastle University:

* request sensory data to tackle
specific challenges, such as
flooding or air quality within
Newcastle Metropolitan area:
http://uoweb1.ncl.ac.uk/

* assuming we interrogate two
sites (locations)in the
Newcastle Urban Observatory,
marked as red hexagons in the
images.

You can see what is the available
sensory information at each site.

s

(i )jjj urban opservatory - Download - Single Sensor » 7 Days




Streaming Machine Learning |
Example use-cases Pollution GO

PER_AD 2qm_aq mesh1918150

Variables:

The task is to learn pair-wise correlations
among the available sensors.

The system performs unsupervised
learning of functional relationships between
two input sensory streams (e.g. NO in Site1
and Temperature in Site 1).

This neural network based system can be
employed in various solutions as a tool to
learn pair-wise sensory correlations among
sensors within / between spatial locations
(e.g. COin Site 2 and O3 in Site 1).
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Streaming Machine Learning |
Example use-cases Pollution GO

The power of the approach is that one can learn / extract sensory
correlations in various constellations:

. Learn between location within sensor correlations
+ example NO2 for site 1 and site 2, correspondingto X and Y respectively, over a range

Encoded relation
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Streaming Machine Learning Il

Example use-cases Traffic GO

The approach can learn/
extract sensory correlations in
various scenarios.

In the traffic scenario we
propose to learn the correlation
between Environment
parameters (NO, O3, NO2,
NOXx), Weather (Humidity, Rain)
and the Traffic Flow (number of
vehicles) at a site.

Once learnt the correlation we
can use it to infer traffic flow in
regions where we do not have
traffic sensors installed but all
other sensors are present.

PER_AQ agm_915 ®

Time of last recording:
2019-02-21 12:00:00

Live readings:
NO2 25.19ugm -3
03 26.05ppb
NOx 27.90 ppb
NO 18.12ugm-3

Go to Sensor Page

PER_CCTV_agm_nc_a1058a1 x

Time of last recording:
2019-02-20 23:30:00

Live readings:
Vehicle Count 4.00 Vehicles

Go to Sensor Page

&
A
.
L4
-
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,bb
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B, £
£
¥ o 2/ J
’
A1058 PER_ Wthr_agm_cradiwellweatherstat
Time of last recording:
ey 2019-02-2107:00:00

Live readings:
Humidity 74.60%
4 - Rain Duration 9.00 seconds
Rainint 0.00?
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Example use-cases Traffic GO
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Streaming Machine Learning Il

Once learnt the correlation we can use it to infer
traffic flow in regions where we do not have
traffic sensors installed but all other sensors are

present (e.g. Humidity and NO2).

Predicted
Vehicle Count

[ GO SLANG - Learnt relations ‘

20 0.8
40 0.6
60 0.4
80 0.2
100 []
20 40 60 80 100

neuron index

neuron index

neuron index

k neuron index

Variables:
Temperature

NO2 o

- -

=2 Site 2

NO2
Hurnidity
Sound

Humidity;‘" o

If the traffic sensor is failing / defect,
The system uses previously learnt relations
to infer a plausible prediction.
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Streaming Machine Learning lll

Example use-case Elevator Analytics
[ Ballbearingsensor-ﬁ.]

[E Humidity and air]

The approach can learn / extract sensory Lighting pressure
correlations for Predictive Maintenance of Elevator g Temperature
; _
Doors. “andchosing ¥ Fangs
¥ Speed
Noise level +1
o Mileage and
For an elevator car door the system can learn the Bhoamml 5% O drive time
correlation between: _
.
* Electromechanical sensors
(Door Ball Bearing Sensor) e

* Ambiance(Humidity)

* Physics(Vibration)

Once learnt the correlation in operational settings
we can use it to infer anomalous operation of the
doors.
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Example use-case Elevator Analytics -

17:00 1800 1900 20000 2100

\_ Time ‘24h}

22:00

\'
Revolutions (#)

J

We have the operation data,
timeseries sampled at 10Hz in
high-peak and evening elevator
usage in a building (between
16:30 and 23:30).

Lighting

Doors opening ab
and closing

Noise level «1)

Abnormal
stops X

Source: Altoros/Kone

17.00 18.00

~

Humidity (%)

19.00 20,00 21.00 22.00 23.00

Time (24h) Y,

~ Humidity and air
pressure

]

2 Temperature
range

¥ Speed

® Mileage and
drive time

Load
@ miscalibration

Vibration (dB)

17.00 18.00 1900 20,00 21.00 2200

Time (24h

~
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Streaming Machine Learning lll
Example use-case Elevator Analytics

Once learnt the correlation we can use it to trigger alarms for anomalies / outliers.
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Conclusions
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Conclusions

Induced by ubiquitous scenarios finite training sets, static models, and stationary distributions must
be completely redefined.
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Conclusions

Induced by ubiquitous scenarios finite training sets, static models, and stationary distributions must
be completely redefined.

The characteristics of the streaming data entail a new vision due to the fact that:

« Data are made available through unlimited streams that continuously flow, eventually at high
speed, over time;

 The underlying regularities may evolve over time rather than being stationary;

 The data can no longer be considered as independent and identically distributed,;

 The data are now often spatially as well as time situated.

A new era of machine learning?
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Thank you.

Bring digital to every person, home, and
organization for a fully connected,
intelligent world.

Copyright©2018 Huawei Technologies Co., Ltd.
All Rights Reserved.

The information in this document may contain predictive
statements including, without limitation, statements regarding
the future financial and operating results, future product

portfolio, new technology, etc. There are a number of factors that
could cause actual results and developments to differ materially
from those expressed or implied in the predictive statements.
Therefore, such information is provided for reference purpose
only and constitutes neither an offer nor an acceptance. Huawei
may change the information at any time without notice.
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Stream Processing Engines

& FI i n k Data Source ~-p Transformations > Data Sink
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Stream Processing Engines

& FI i n k Data Source -~ » Transformations > Data Sink

Aggregating events (e.g., counts, sums) works me vindors
differently on streams because it is impossible to i i 4
count all (unbounded). | “" f{’: T L
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Stream Processing Engines

%Flink

Data Source

Aggregating events (e.g., counts, sums) works
differently on streams because it is impossible to

count all (unbounded).

Stream processing and windowing makes it easy to
compute accurate results over streams where
events arrive out of order and where events may

arrive delayed.

Transformations > Data Sink

Time windows
Event

A A A A
\ A 14 N ]
I H N : g H ]
v

Event stream

Count(3) Windows
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Stream Processing Engines

@ FI i N k Data Source

Aggregating events (e.g., counts, sums) works
differently on streams because it is impossible to
count all (unbounded).

Stream processing and windowing makes it easy to
compute accurate results over streams where
events arrive out of order and where events may
arrive delayed.

Windowing based on time, count, and data-driven
windows. Windows can be customized with flexible
triggering conditions to support sophisticated
streaming patterns.

-------------- » Transformations  —* Data Sink

Time windows

Count(3) Windows

h"'--.._ -:"'- - ‘_":-’"
=
HEEEEs —
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Stream Processing Engines

%Flink

When executed, Flink programs
are mapped to streaming
dataflows, consisting of streams
and transformation operators.

Each dataflow starts with one or
more sources and ends in one
or more sinks.

The dataflows resemble arbitrary
directed acyclic graphs (DAGS).

V2 HUAWEI



Stream Processing Engines

DatasStream<Strings> lines = env.addSource| Source
FI i n k new FlinkEafkaConsumer<s (..))

DataStream<Event> events = lines.map((line) =-> parse(lines)); } Transformatior
Datastream<Statistics» stats = events
. -keyBy ("1d") Transformatiot
When executed, Flink programs .timeWindow(Time. seconds(10))

.apply(new MyWindowkggregationFunction()):

are mapped to streaming
dataflows, consisting of streams
and transformation operators.

stats.addsSink(new RollingSink(path)); } sink

Each dataflow starts with one or
more sources and ends in one
or more sinks.

The dataflows resemble arbitrary
directed acyclic graphs (DAGS).

V2 HUAWEI



Stream Processing Engines

&Flink

When executed, Flink programs
are mapped to streaming
dataflows, consisting of streams
and transformation operators.

Each dataflow starts with one or
more sources and ends in one
or more sinks.

The dataflows resemble arbitrary
directed acyclic graphs (DAGS).

k

Datastream<sString> lines = env.addSource(
new FlinkEKafkaConsumer<s>(.));
DatasStreamkEvent> events = lines.map((lins) -> parse(lines)); }
DataStream<Statistics> stats = events
keyBy("id")

.tEimeWindow(Time. seconds(l10))

.apply(new MyWindowhggregationFunction()):

stats.addSink(new EollingSink(path));

L~

Source Transformation Sink
Operator Operators Operator
/ v \ \
keyBy()/
Source map() window()/ Sink
\ [ y
Stream

Streaming Dataflow

Source

Transformatior

Transformatior

Sink



Stream Processing Engines

&Flink

For distributed execution, Flink
chains operator subtasks
together into tasks. Each task
Is executed by one thread.
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Stream Processing Engines

& FI i n k k_eyﬁy(jf . | Streaming Dataflow
 Window()/" : S (condensed view)

apply()

For distributed execution, Flink
chains operator subtasks
together into tasks. Each task
Is executed by one thread.

Operator chain
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Stream Processing Engines

@Flink

For distributed execution, Flink
chains operator subtasks
together into tasks. Each task
Is executed by one thread.

P keyBy () i Streaming Dataflow

t window()/ : Sink [~ (condensed view)

apply()

Operator chain

Chaining operators together
into tasks is a useful
optimization: it reduces the
overhead of thread-to-thread
handover and buffering, and
increases overall throughput
while decreasing latency.
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Stream Processing Engines

@Flink

For distributed execution, Flink
chains operator subtasks
together into tasks. Each task
Is executed by one thread.

Chaining operators together
into tasks is a useful
optimization: it reduces the
overhead of thread-to-thread
handover and buffering, and
increases overall throughput
while decreasing latency.

. keyBy()/ |
window()/ :

apply()

- keyBy ()
window()/ :

apply()
[1]

subtask ——

(= thread)
¢

' keyBy () |

i window()/

apply()
[2]

Sink

Sink
{1]

Streaming Dataflow
(condensed view)

Streaming Dataflow
(parallelized view)
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