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Elements of Streaming Machine Learning
Normally, the user is caught in a tradeoff without solution:
• a small size (so that the window reflects accurately the current distribution)
• a large size (so that many examples are available to work on, increasing accuracy in

periods of stability).

Currently, it has been proposed to use windows of variable size.
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Induced by ubiquitous scenarios finite training sets, static models, and stationary distributions must
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The characteristics of the streaming data entail a new vision due to the fact that:
• Data are made available through unlimited streams that continuously flow, eventually at high
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A new era of machine learning?
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