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GLUECK
Growth pattern Learning for
Unsupervised Extraction of Cancer Kinetics



Tumor growth data

Growth kinetics of Fortner Plasmacytoma 1 tumors. Points represent mean volume of subcutaneous tumor implants in mice, error bars 
represent +/-1 standard error of the mean at each point. Data from Simpson-Herren et al. Cancer Chemother Rep 54(3)

Peculiarities of data:

• Small

• Unevenly sampled

• High-variability

• Heterogeneous

• Model selection is hard

• Determines treatment



Tumor growth models

Parameters:

N - cell population size (or volume),

α - growth rate, 

β - cell death rate, 

λ - nutrient limited proliferation rate, 

k - carrying capacity of cells.



Instantiating the model



Experiments and evaluation

Evaluation metrics for tumor growth models. 

We consider: 

N - number of measurements,

σ- standard deviation of data, 

p - number of parameters of the model.



Experiments and evaluation



Experiments and evaluation



TUCANN
Tumor Phenotypical Transitions Characterization 
using Artificial Neural Networks



Phenotypical transitions of tumors in DCIS

In typical cancer phenotypic state space, quiescent cancer cells 

(Q) can become proliferative (P) or apoptotic (A).

Can we learn phenotypical transitions from timeseries of 

raw immunohistochemistry and morphometric data?

where, τP is the cells cycle time, τA cells apoptosis time , PI 

proliferation index and AI apoptosis index.



Phenotypical transitions of tumors in DCIS

Can we learn phenotypical transitions from timeseries of raw immunohistochemistry and morphometric data?



CHIMERA
Combining Mechanistic Models and 
Machine Learning for Chemotherapy-
Surgery Sequencing 



Formalizing therapy sequencing

What is the best course of action for a particular patient, neoadjuvant or 

adjuvant chemotherapy?

Assuming that the tumor size at time 𝑡0 = 0 is 𝑉0 there are two possible sequences:

• Adjuvant chemotherapy: At time 𝑡0 > 0 a fraction of the tumor is removed through

surgery and subsequently chemotherapy is administered with a killing rate of 1 −
𝑒−𝑘𝑠 where 𝑘𝑠 is a rate constant. The final size after the intervention, at 𝑡𝑓 > 𝑡0 is 𝑉𝑎𝑑𝑗 .

• Neoadjuvant chemotherapy: At time 𝑡0 > 0 chemotherapy is administered with a

predefined killing rate. At 𝑡𝑓 > 𝑡0 a fraction 1 − 𝑒−𝑘𝑠 of the tumor is removed through

surgery for a final size after the intervention 𝑉𝑛𝑒𝑜𝑎𝑑𝑗.

The question of interest in our study is if 𝑉𝑎𝑑𝑗 > 𝑉𝑛𝑒𝑜𝑎𝑑𝑗?



Formalizing therapy sequencing

If we consider 𝑓 𝑉 the tumor growth model and 𝑃(𝑡, 𝑉) the pharmacokinetics of the

chemotherapeutic drug, we can formalize the two sequences as following:

• Sequence 1: Adjuvant setting, where size before surgery is
𝑑𝑣1

𝑑𝑡
= 𝑓 𝑣1 , 𝑣1 (0) =

𝑉0, 𝑡 ∈ [0, 𝑡0] and size after surgery is
𝑑𝑉1

𝑑𝑡
= 𝑓 𝑉1 − 𝑃 𝑡, 𝑉1 , 𝑉1 𝑡0 = 𝑒−𝑘𝑠𝑣1 𝑡0 , 𝑡 ∈ [𝑡0, 𝑡𝑓].

In this case, the final volume of the tumor is 𝑉𝑎𝑑𝑗 = 𝑉1(𝑡𝑓).

• Sequence 2: Neoadjuvant setting, where the size before chemotherapy onset is
𝑑𝑣2

𝑑𝑡
= 𝑓 𝑣2 , 𝑣2 (0) = 𝑉0, 𝑡 ∈ [0, 𝑡0] and the size after chemotherapy onset is

𝑑𝑉2

𝑑𝑡
= 𝑓 𝑉2 − 𝑃 𝑡, 𝑉2 , 𝑉2(𝑡0) = 𝑣2(𝑡0), 𝑡 ∈ [𝑡0, 𝑡𝑓] respectively.

Hence, for the neoadjuvant sequence, the final volume of the tumor is

𝑉𝑛𝑒𝑜𝑎𝑑𝑗 = 𝑒−𝑘𝑠𝑉2(𝑡𝑓).



Tumor growth models

Parameters:

N - cell population size (or volume),

α - growth rate, 

β - cell death rate, 

λ - nutrient limited proliferation rate, 

k - carrying capacity of cells.



Pharmacokinetics models

In our study, we use the data from the computational model of Paclitaxel pharmacokinetics of Kuh et 

al. 2000 [8], due to its wide use in breast cancer chemotherapy schemes. 

The model describes the factors that determine the kinetics of Paclitaxel uptake, binding, and efflux

from cells

𝑑𝑐 𝑡

𝑑𝑡
=

−𝐴 + 𝐴2 + 4𝐾𝑑,𝑚𝑐𝑚 𝑡

2
−

−𝐵 + 𝐵2 + 4 1 + 𝑁𝑆𝐵 𝐾𝑑,𝑐𝑐 𝑡

2(1 + 𝑁𝑆𝐵)

𝐶𝐿𝑓

𝑉𝑜𝑛𝑒𝑐𝑒𝑙𝑙
− 𝑘𝑐𝑒𝑙𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑐(𝑡)

where: 

• 𝑉𝑜𝑛𝑒𝑐𝑒𝑙𝑙 is the average cell volume

• 𝐼𝐶𝑁 is the initial cell number 

• 𝑁𝑆𝐵 is the proportionality constant for non-saturable binding sites in cells 

• 𝑘𝑐𝑒𝑙𝑙𝑛𝑢𝑚𝑏𝑒𝑟 is the rate constant for changes in cell number 

• 𝐴 is a function of the constant for drug binding to proteins in medium 𝐾𝑑,𝑚
• 𝐵 is a function of the constant for drug binding to proteins in cells

• 𝐶𝐿𝑓 is the clearance of free drug by passive diffusion, on a per cell basis

• 𝑐𝑚 concentration of drug in the medium, calculated as:

𝑑𝑐𝑚 𝑡

𝑑𝑡
=

−𝐴 + 𝐴2 + 4𝐾𝑑,𝑚𝑐𝑚 𝑡

2
−

−𝐵 + 𝐵2 + 4 1 + 𝑁𝑆𝐵 𝐾𝑑,𝑐𝑐 𝑡

2(1 + 𝑁𝑆𝐵)

𝐶𝐿𝑓𝐼𝐶𝑁𝑒
𝑘𝑐𝑒𝑙𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑡

𝑉𝑚



Experiments and evaluation
Learning tumor growth



Experiments and evaluation
Learning pharmacokinetics



Experiments and evaluation
Chemotherapy-Surgery Sequencing

Following our initial derivation, 𝑉𝑛𝑒𝑜𝑎𝑑𝑗 = 𝑒−𝑘𝑠𝑉2(𝑡𝑓) and 𝑉𝑎𝑑𝑗 = 𝑉1(𝑡𝑓) correspond to

tumor sizes in neo-adjuvant and adjuvant sequences, respectively.

Under the log-kill assumption, if we let 𝑐(𝑡) = − 𝑡0
𝑡𝑓 𝑐 𝑠 𝑒𝛽𝑠𝑑𝑠 then

𝑉𝑛𝑒𝑜𝑎𝑑𝑗

𝑉𝑎𝑑𝑗
= exp{−𝑘𝑠 1 − 𝑒−𝛽 𝑡𝑓− 𝑡0 } < 1

hence 𝑉𝑛𝑒𝑜𝑎𝑑𝑗 < 𝑉𝑎𝑑𝑗 .

Similarly, under the Norton-Simon assumption we obtain

𝑉𝑛𝑒𝑜𝑎𝑑𝑗

𝑉𝑎𝑑𝑗
= exp{−𝑘𝑠 1 − 𝑒−𝛽(𝑡𝑓 − 𝑡0)+𝑐(𝑡𝑓)}), }

which for 𝑐(𝑡) =  𝑡0
𝑡𝑓 𝑐 𝑠 𝑑𝑠 < 𝑡𝑓 − 𝑡0 determines 𝑉𝑛𝑒𝑜𝑎𝑑𝑗 < 𝑉𝑎𝑑𝑗.

A given dose of chemotherapy kills the 

same fraction of tumor cells regardless of 

the size of the tumor at the time of 

treatment.

The rate of cancer cell death in response 

to treatment is directly proportional to 

the tumor growth rate at the time of 
treatment.



Experiments and evaluation
Chemotherapy-Surgery Sequencing

Let’s consider the MCF‐7 cell line dataset from Tan et al. 2015 [16] described in our

Experimental setup. We use the derivations for 𝑉𝑛𝑒𝑜𝑎𝑑𝑗 and 𝑉𝑎𝑑𝑗 and fill in with the

decoded values from the learnt tumor growth 𝑓(𝑉) and learnt pharmacokinetics

𝑃(𝑡, 𝑉).

CHIMERA uses learnt tumor growth and pharmacokinetics to infer the most

appropriate sequence of therapy, consistent with its mechanistic counterparts, but

without extensive biological parametrization.



PERFECTO
Prediction of Extended Response and Growth 
Functions for Estimating Chemotherapy Outcomes



Chemotherapy regimen planning

Context

Chemotherapy regimens are chosen primarily based on:

• empirical data from clinical trials

• patient’s form and subtype of cancer

• progression to metastases

• high-risk indications

• prognosis

Problem

Challenges in successfully predicting the effectiveness

(i.e. size of the tumor after neoadjuvant chemotherapy)

of any particular chemotherapy plan for any given patient

before the initiation of the regimen.

https://www.cancernetwork.com/view/her2-

targeted-therapy-early-stage-breast-cancer-

comprehensive-review



Tumor growth models

Growth under chemotherapy



Model instantiation



Experiments and evaluation
Learning unperturbed tumor growth



Experiments and evaluation
Learning perturbed tumor growth
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AKII Lab Origins
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