

Mathematical and Computational Oncology

Framework and tools for predictive systems

Dr. Ing. Cristian Axenie

Head of Audi Konfuzius Institute Ingolstadt Lab Lecturer at Technische Hochschule Ingolstadt Staff Research Engineer at Huawei Research Center

Overview

A Framework for Mathematical and Computational Oncology

A Framework for Mathematical and Computational Oncology

Core model

Core model internals

Learning capabilities I

Learning capabilities II

Extensibility I

Extensibility II

Tumor growth data

Peculiarities of data:

- Small
- Unevenly sampled
- High-variability
- Heterogeneous
- Model selection is hard
- Determines treatment

Growth kinetics of Fortner Plasmacytoma 1 tumors. Points represent mean volume of subcutaneous tumor implants in mice, error bars represent +/-1 standard error of the mean at each point. Data from Simpson-Herren et al. Cancer Chemother Rep 54(3)

Tumor growth models

Model	Equation
Logistic	$\frac{dN}{dt} = \alpha N - \beta N^2$
Bertalanffy	$\frac{dN}{dt} = \alpha N^{\lambda} - \beta N$
Gompertz	$\frac{dN}{dt} = N(\beta - \alpha \ln N)$
Holling	$\frac{dN}{dt} = \frac{\alpha N}{k+N} - \beta N$

Parameters:

N - cell population size (or volume),

 α - growth rate,

 β - cell death rate,

 λ - nutrient limited proliferation rate,

k - carrying capacity of cells.

Instantiating the model

Experimental dataset setup

2 Breast (MDA-MB-435) Digital Caliper 14 2x/wee 3 Lung Caliper 10 7x/wee	Dataset	Cancer Type	Data Type	Data Point	s Data Freq.
3 Lung Caliper 10 7x/wee	1 B	reast (MDA-MB-231)	Fluorescence imaging	7	2x/week
,	2 B	Freast (MDA-MB-435)	Digital Caliper	14	2x/week
	3	Lung	Caliper	10	7x/week
4 Leukemia Microscopy 23 7x/wee	4	Leukemia	Microscopy	23	7x/week

Metric	Equation	
SSE	$\sum_{i=1}^{N} \left(\frac{y^i - y_m^i}{\frac{\sigma_i}{\sigma_i}} \right)$	Evaluation metrics for tumor growth models.
RMSE	$\sqrt{\frac{SSE}{N-p}}$	We consider:
sMAPE	$\frac{1}{N} \sum_{i=1}^{N} \left(2 \frac{ y^i - y_m^i }{(y^i + y_m^i)} \right)$	N - number of measurements,
AIC	$Nln(\frac{SSE}{N}) + 2p$	σ - standard deviation of data,
BIC	$Nln(\frac{SSE}{N}) + ln(N)p$	p - number of parameters of the model.

I	Evaluation Metric	es (smaller value	is better)			Eval	uation Me	etrics (smalle	r value is	s better))
Dataset/Model	SSE RMSE	sMAPE AIC	BIC R	ank ^a	Dataset/M	odel	SSE RM	SE sMAPE	AIC	BIC	Rank^a
Breast cancer 20					Lung cancer[6]						
Logistic	7009.6 37.4423	1.7088 52.3639	52.2557	2	Logistic	44.5261	2.2243	1.5684 19.	3800 20	0.1758	2
Bertalanffy	8004.9 44.7350	1.7088 55.2933	55.1310	5	Bertalanffy	54.1147	2.6008	1.5684 23.	5253 24	1.7190	5
Gompertz	$7971.8\ 39.9294$	1.7088 53.2643	53.1561	4	Gompertz	53.2475	2.4324	1.5684 21.	3476 22	2.1434	4
Holling	$6639.1\ 40.7403$	1.4855 53.9837	53.8215	3	Holling	50.6671	2.5166	1.5361 22.	8012 23	3.9949	3
GLUECK	119.3 4.1285	0.0768 19.8508	19.8508	1	GLUECK	3.6903	0.5792	0.2121 -12.	0140 -12	2.0140	1
Breast ^c cancer[26]					Leukemia 23						
Logistic	0.2936 0.1713	0.1437 -40.5269	-39.5571	4	Logistic	223.7271	3.2640	1.6368 56.	3235 58	3.5944	2
Bertalanffy	0.2315 0.1604	0.1437 -41.3780	-39.9233	2	Bertalanffy	273.6770	3.6992	1.6368 62.	9585 66	6.3649	5
Gompertz	0.3175 0.1782	0.1437 -39.5853	-38.6155	5	Gompertz	259.9277	3.5182	1.6368 59.	7729 62	2.0439	4
Holling	0.2699 0.1732	0.1512 -39.5351	-38.0804	3	Holling :	248.5784	3.5255	1.6001 60.	7461 64	4.1526	3
GLUECK	0.0977 0.0902	0.0763 -57.7261	-57.7261	1	GLUECK	35.2541	1.2381	0.3232 9.	8230 9	9.8230	1

 ^a Calculated as best in 3/5 metrics.
 ^b MDA-MB-231 cell line

 $[^]c$ MDA-MB-435 cell line

Phenotypical transitions of tumors in DCIS

In typical cancer **phenotypic state space**, **quiescent** cancer cells (**Q**) can become **proliferative** (**P**) or **apoptotic** (**A**).

Can we learn **phenotypical transitions** from timeseries of raw immunohistochemistry and morphometric data?

$$\alpha_P = \frac{\frac{1}{\tau_P}(PI + PI^2) - \frac{1}{\tau_A}AIPI}{1 - AI - PI}$$

$$\alpha_A = \frac{\frac{1}{\tau_A}(AI - AI^2) + \frac{1}{\tau_P}AIPI}{1 - AI - PI}$$

where, τ_P is the cells cycle time, τ_A cells apoptosis time, PI proliferation index and AI apoptosis index.

Phenotypical transitions of tumors in DCIS

Can we learn phenotypical transitions from timeseries of raw immunohistochemistry and morphometric data?

CHIMERA

Combining Mechanistic Models and Machine Learning for Chemotherapy-Surgery Sequencing

Formalizing therapy sequencing

What is the best course of action for a particular patient, neoadjuvant or adjuvant chemotherapy?

Assuming that the tumor size at time $t_0 = 0$ is V_0 there are two possible sequences:

- Adjuvant chemotherapy: At time $t_0 > 0$ a fraction of the tumor is removed through surgery and subsequently chemotherapy is administered with a killing rate of $1 e^{-k_s}$ where k_s is a rate constant. The final size after the intervention, at $t_f > t_0$ is V_{adj} .
- **Neoadjuvant chemotherapy**: At time $t_0 > 0$ chemotherapy is administered with a predefined killing rate. At $t_f > t_0$ a fraction $1 e^{-k_s}$ of the tumor is removed through surgery for a final size after the intervention V_{neoadj} .

The question of interest in our study is if $V_{adj} > V_{neoadj}$?

Formalizing therapy sequencing

If we consider f(V) the tumor growth model and P(t,V) the pharmacokinetics of the chemotherapeutic drug, we can formalize the two sequences as following:

• **Sequence 1**: Adjuvant setting, where size before surgery is $\frac{dv_1}{dt} = f(v_1), v_1(0) = V_0, t \in [0, t_0]$ and size after surgery is

$$\frac{dV_1}{dt} = f(V_1) - P(t, V_1), V_1(t_0) = e^{-k_s} v_1(t_0), t \in [t_0, t_f].$$

In this case, the final volume of the tumor is $V_{adj} = V_1(t_f)$.

• **Sequence 2**: Neoadjuvant setting, where the size before chemotherapy onset is $\frac{dv_2}{dt} = f(v_2), v_2(0) = V_0, t \in [0, t_0]$ and the size after chemotherapy onset is

$$\frac{dV_2}{dt} = f(V_2) - P(t, V_2), V_2(t_0) = v_2(t_0), t \in [t_0, t_f]$$
 respectively.

Hence, for the neoadjuvant sequence, the final volume of the tumor is $V_{neoadj} = e^{-k_s}V_2(t_f)$.

Tumor growth models

Model	Equation
Logistic	$\frac{dN}{dt} = \alpha N - \beta N^2$
Bertalanffy	$\frac{dN}{dt} = \alpha N^{\lambda} - \beta N$
Gompertz	$\frac{dN}{dt} = N(\beta - \alpha \ln N)$
Holling	$\frac{dN}{dt} = \frac{\alpha N}{k+N} - \beta N$

Parameters:

N - cell population size (or volume),

 α - growth rate,

 β - cell death rate,

 λ - nutrient limited proliferation rate,

k - carrying capacity of cells.

Pharmacokinetics models

In our study, we use the data from the computational model of **Paclitaxel pharmacokinetics** of Kuh et al. 2000 [8], due to its wide use in **breast cancer chemotherapy schemes**.

The model describes the factors that determine the kinetics of **Paclitaxel uptake**, **binding**, and **efflux** from cells

$$\frac{dc(t)}{dt} = \left[\frac{-A + \sqrt{A^2 + 4K_{d,m}c_m(t)}}{2} - \frac{-B + \sqrt{B^2 + 4(1 + NSB)K_{d,c}c(t)}}{2(1 + NSB)} \right] \frac{CL_f}{V_{onecell}} - k_{cellnumber}c(t)$$

where:

- V_{onecell} is the average cell volume
- *ICN* is the initial cell number
- NSB is the proportionality constant for non-saturable binding sites in cells
- $k_{cellnumber}$ is the rate constant for changes in cell number
- A is a function of the constant for drug binding to proteins in medium $K_{d,m}$
- *B* is a function of the constant for drug binding to proteins in cells
- CL_f is the clearance of free drug by passive diffusion, on a per cell basis
- c_m concentration of drug in the medium, calculated as:

$$\frac{dc_m(t)}{dt} = \left[\frac{-A + \sqrt{A^2 + 4K_{d,m}c_m(t)}}{2} - \frac{-B + \sqrt{B^2 + 4(1 + NSB)K_{d,c}c(t)}}{2(1 + NSB)} \right] \frac{CL_f ICNe^{k_{cellnumber}t}}{V_m}$$

Learning tumor growth

Learning pharmacokinetics

Chemotherapy-Surgery Sequencing

Following our initial derivation, $V_{neoadj} = e^{-k_s}V_2(t_f)$ and $V_{adj} = V_1(t_f)$ correspond to tumor sizes in neo-adjuvant and adjuvant sequences, respectively.

Under the log-kill assumption, if we let $c(t) = -\int_{t_0}^{t_f} c(s)e^{\beta_s}ds$ then

$$\frac{V_{neoadj}}{V_{adj}} = \exp\{-k_s \left(1 - e^{-\beta(t_f - t_0)}\right)\} < 1$$

A given dose of chemotherapy kills the same fraction of tumor cells regardless of the size of the tumor at the time of treatment.

hence $V_{neoadj} < V_{adj}$.

Similarly, under the **Norton-Simon assumption** we obtain

$$\frac{V_{neoadj}}{V_{adj}} = \exp\{-k_s (1 - e^{-\beta(t_f - t_0) + c(t_f)\}}),\}$$

The rate of cancer cell death in response to treatment is directly proportional to the tumor growth rate at the time of treatment.

which for $c(t) = \int_{t_0}^{t_f} c(s) ds < t_f - t_0$ determines $V_{neoadj} < V_{adj}$.

Chemotherapy-Surgery Sequencing

Let's consider the MCF-7 cell line dataset from Tan et al. 2015 [16] described in our Experimental setup. We use the derivations for V_{neoadj} and V_{adj} and fill in with the decoded values from the learnt tumor growth f(V) and learnt pharmacokinetics P(t,V).

Model (Biological Parameters) Log-kill hypothesis Norton-Simon hypothesis Gompertz
$$(\beta, K, \upsilon) \quad V_{neoadj} < V_{adj} \quad V_{neoadj} < V_{adj}$$
 CHIMERA
$$(\text{none}) \quad V_{neoadj} < V_{adj} \quad V_{neoadj} > V_{adj}$$
 *Holds only if $c(t) = \int_{t_0}^{t_f} c(s) ds < t_f - t_0$.

CHIMERA uses learnt tumor growth and pharmacokinetics to infer the most appropriate sequence of therapy, consistent with its mechanistic counterparts, but without extensive biological parametrization.

Chemotherapy regimen planning

Context

Chemotherapy regimens are chosen primarily based on:

- empirical data from clinical trials
- patient's form and subtype of cancer
- progression to metastases
- high-risk indications
- prognosis

Problem

Challenges in successfully **predicting the effectiveness** (i.e. size of the tumor after **neoadjuvant chemotherapy**) of any particular chemotherapy plan for any given patient **before the initiation of the regimen**.

Tumor growth models

Growth under chemotherapy

Model instantiation

Learning unperturbed tumor growth

Experimental dataset setup

Dataset	Cancer Type	Data Type	Data Points	Data Freq.
1	MDA-MB-231 cell line	Fluorescence imaging	7	2x/week
2	MDA-MB-435 cell line	Digital Caliper	14	2x/week
3	MCF-7 cell line	Caliper	8	1x/week
4	LM2-4LUC+ cell line	Digital Caliper	10	3x/week

Learning perturbed tumor growth

Dataset/Model	SSE	RMSE	sMAPE
MDA-MB-231 cell line cancer [29]			
Logistic	7009.6	37.4423	1.7088
Bertalanffy	8004.9	44.7350	1.7088
Gompertz	7971.8	39.9294	1.7088
PERFECTO	119.3	4.1285	0.0768
MDA-MB-435 cell line cancer [15]			
Logistic	0.2936	0.1713	0.1437
Bertalanffy	0.2315	0.1604	0.1437
Gompertz	0.3175	0.1782	0.1437
PERFECTO	0.0977	0.0902	0.0763
MCF-7 cell line cancer [30]	•••••		:
Logistic	3.0007	0.7072	1.0607
Bertalanffy	3.2943	0.8117	1.0607
Gompertz	3.1909	0.7293	1.0607
PERFECTO	0.7669	0.3096	0.2615
LM2-4LUC+ cell line cancer [31]			
Logistic	45.6032	2.3876	1.4816
Bertalanffy	56.0739	2.8303	1.4816
Gompertz	53.2428	2.5798	1.4816
PERFECTO	0.2009	0.1417	0.0365
I-SPY2 Trial [32]			••••••
Logistic	248.3735	11.1439	1.7833
Bertalanffy	259.0963	16.0963	1.7834
Gompertz	260.3747	11.4100	1.7883
PERFECTO	0.8650	0.4650	0.0389

AKII Lab

AKII Lab Team

DR. CRISTIAN
AXENIE,
GROUP LEADER,
PI IN AI AND ML

PROF. DR. THOMAS GRAUSCHOPF, PLIN VR

GHEORGHE LISCA, PHD STUDENT

XIAORUI DU, PHD STUDENT

Helios Klinikum München West

Akademisches Lehrkrankenhaus der Ludwig-Maximilians-Universität München

Daria Kurz

Leitende Oberärztin

Gynäkologisches Krebszentrum

Interdisziplinäres Brustzentrum

CRISTOBAL RODRIGUEZ, BA STUDENT

ARMIN BECHER, RESEARCH ASSISTANT

SEBASTIAN POHL, MSC STUDENT

STEFAN SCHIECHEL, BA STUDENT

MARTIN KUNZ, BA STUDENT

AKII Lab Origins

AKII Lab Profile

